Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides

被引:12
|
作者
Wani, Mushtaq Ahmad [1 ]
Garg, Prabha [2 ]
Roy, Kuldeep K. [1 ,3 ]
机构
[1] Natl Inst Pharmaceut Educ & Res, Dept Pharmacoinformat, Kolkata 700054, W Bengal, India
[2] Natl Inst Pharmaceut Educ & Res, Dept Pharmacoinformat, Mohali 160062, Punjab, India
[3] Univ Petr & Energy Studies UPES, Sch Hlth Sci, Dept Pharmaceut Sci, PO Bidholi, Dehra Dun 248007, Uttarakhand, India
关键词
Machine learning; Random forest; Classification model; Antimicrobial peptides; Multi-drug resistance; BACTERICIDAL AGENT; PROTEIN;
D O I
10.1007/s11517-021-02443-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The ubiquitous antimicrobial peptides (AMPs), with a broad range of antimicrobial activities, represent a great promise for combating the multi-drug resistant infections. In this study, using a large and diverse set of AMPs (2638) and non-AMPs (3700), we have explored a variety of machine learning classifiers to build in silico models for AMP prediction, including Random Forest (RF), k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), Quadratic Discriminant Analysis (QDA), and ensemble learning. Among the various models generated, the RF classifier-based model top-performed in both the internal [Accuracy: 91.40%, Precision: 89.37%, Sensitivity: 90.05%, and Specificity: 92.36%] and external validations [Accuracy: 89.43%, Precision: 88.92%, Sensitivity: 85.21%, and Specificity: 92.43%]. In addition, the RF classifier-based model correctly predicted the known AMPs and non-AMPs; those kept aside as an additional external validation set. The performance assessment revealed three features viz. ChargeD2001, PAAC12 (pseudo amino acid composition), and polarity T13 that are likely to play vital roles in the antimicrobial activity of AMPs. The developed RF-based classification model may further be useful in the design and prediction of the novel potential AMPs.
引用
收藏
页码:2397 / 2408
页数:12
相关论文
共 50 条
  • [1] Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides
    Mushtaq Ahmad Wani
    Prabha Garg
    Kuldeep K. Roy
    [J]. Medical & Biological Engineering & Computing, 2021, 59 : 2397 - 2408
  • [2] Machine learning-enabled prediction of antimicrobial resistance in foodborne pathogens
    Yun, Bona
    Liao, Xinyu
    Feng, Jinsong
    Ding, Tian
    [J]. CYTA-JOURNAL OF FOOD, 2024, 22 (01)
  • [3] Machine learning-enabled discovery and design of membrane-active peptides
    Lee, Ernest Y.
    Wong, Gerard C. L.
    Ferguson, Andrew L.
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY, 2018, 26 (10) : 2708 - 2718
  • [4] Machine learning-enabled retrobiosynthesis of molecules
    Yu, Tianhao
    Boob, Aashutosh Girish
    Volk, Michael J.
    Liu, Xuan
    Cui, Haiyang
    Zhao, Huimin
    [J]. NATURE CATALYSIS, 2023, 6 (2) : 137 - 151
  • [5] Machine learning-enabled retrobiosynthesis of molecules
    Tianhao Yu
    Aashutosh Girish Boob
    Michael J. Volk
    Xuan Liu
    Haiyang Cui
    Huimin Zhao
    [J]. Nature Catalysis, 2023, 6 : 137 - 151
  • [6] Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics
    Khaledi, Ariane
    Weimann, Aaron
    Schniederjans, Monika
    Asgari, Ehsaneddin
    Kuo, Tzu-Hao
    Oliver, Antonio
    Cabot, Gabriel
    Kola, Axel
    Gastmeier, Petra
    Hogardt, Michael
    Jonas, Daniel
    Mofrad, Mohammad R. K.
    Bremges, Andreas
    McHardy, Alice C.
    Haeussler, Susanne
    [J]. EMBO MOLECULAR MEDICINE, 2020, 12 (03)
  • [7] Machine Learning-Enabled Smart Sensor Systems
    Ha, Nam
    Xu, Kai
    Ren, Guanghui
    Mitchell, Arnan
    Ou, Jian Zhen
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (09)
  • [8] Machine Learning-Enabled Zero Touch Networks
    Shami, Abdallah
    Ong, Lyndon
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (02) : 80 - 80
  • [9] Machine learning-enabled multiplexed microfluidic sensors
    Dabbagh, Sajjad Rahmani
    Rabbi, Fazle
    Dogan, Zafer
    Yetisen, Ali Kemal
    Tasoglu, Savas
    [J]. BIOMICROFLUIDICS, 2020, 14 (06)
  • [10] MACHINE LEARNING-ENABLED ZERO TOUCH NETWORKS
    Shami, Abdallah
    Ong, Lyndon
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (06) : 50 - 50