MULTI-TEMPORAL ANALYSIS OF NORTHEAST VEGETATION BY MEANS OF MODIS-EVI DATA

被引:0
|
作者
Formigoni, Mileide de Holanda
Xavier, Alexandre Candido [1 ]
De Souza Lima, Juliao Soares [1 ]
机构
[1] Univ Fed Espirito Santo, Ctr Ciencias Agr, Dept Engn Rural, BR-29500000 Alegre, ES, Brazil
来源
CIENCIA FLORESTAL | 2011年 / 21卷 / 01期
关键词
remote sensing; vegetation indices; biomes; SATELLITE DATA; CLASSIFICATION;
D O I
暂无
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Brazilian Northeast (NEB) region presents different vegetation types that are important to maintain this ecosystem. With remote sensing techniques it is possible to analyze variations in vegetation community and alterations in vegetation phenology. The main objective of this work is to evaluate the temporal behavior of the Enhanced Vegetation Index (EVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) of different vegetation types in the NEB over the period ranging from February/2000 to July/2006. The study area was a 1,800 km long transect at latitude -6 degrees 41'24 '' enclosed at the NEB region. A map of Brazil (1: 5,000,000 scale, from Brazilian Institute of Geography and Statistics, IBGE) was used to characterize the vegetation types. A total of 144 cloud-free EVI images with spatial resolution of 250 m were acquired from National Aeronautics and Space Administration (NASA). The results showed that: i) EVI data were sensible to the vegetation types; ii) amazon vegetation presented lesser variation in the multi-temporal EVI, however with greater values; iii) Caatinga vegetation presented greater EVI values variation.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Vegetation phenology from multi-temporal EOS MODIS data
    Yu, XF
    Zhuang, DF
    Chen, SQ
    Hou, XY
    Chen, H
    WEATHER AND ENVIRONMENTAL SATELLITES, 2004, 5549 : 185 - 193
  • [2] Methodology for classification of land use and vegetation cover using MODIS-EVI data
    Mengue, Vagner P.
    Fontana, Denise C.
    da Silva, Tatiana S.
    Zanotta, Daniel
    Scotta, Fernando C.
    REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2019, 23 (11): : 812 - 818
  • [3] DOWNSCALING VEGETATION FRACTION BY FUSING MULTI-TEMPORAL MODIS AND LANDSAT DATA
    Wang, Jinying
    Wang, Hongyan
    Li, Xiaosong
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 757 - 760
  • [4] Estimation of perennial vegetation cover distribution in the Mojave Desert using MODIS-EVI data
    Wallace, Cynthia S. A.
    Webb, Robert H.
    Thomas, Kathryn A.
    GISCIENCE & REMOTE SENSING, 2008, 45 (02) : 167 - 187
  • [5] The improvement of an object-oriented classification using multi-temporal MODIS EVI satellite data
    Gao, Y.
    Mas, J. -F.
    Navarrete, A.
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2009, 2 (03) : 219 - 236
  • [6] Evaluation of the Vegetation Coverage Resilience in Areas Damaged by the Wenchuan Earthquake Based on MODIS-EVI Data
    Liu, Xiaofu
    Jiang, Weiguo
    Li, Jing
    Wang, Wenjie
    SENSORS, 2017, 17 (02)
  • [7] Vegetation structure and greenness in Central Africa from Modis multi-temporal data
    Gond, Valery
    Fayolle, Adeline
    Pennec, Alexandre
    Cornu, Guillaume
    Mayaux, Philippe
    Camberlin, Pierre
    Doumenge, Charles
    Fauvet, Nicolas
    Gourlet-Fleury, Sylvie
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 368 (1625)
  • [8] Characterizing the dynamics change of vegetation cover on tropical forestlands using 250 m multi-temporal MODIS EVI
    Setiawan, Yudi
    Yoshino, Kunihiko
    Prasetyo, Lilik Budi
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2014, 26 : 132 - 144
  • [9] Analysis of areas undergoing desertification, using EVI2 multi-temporal data based on MODIS imagery as indicator
    Bezerra, F. G. S.
    Aguiar, A. P. D.
    Alvala, R. C. S.
    Giarolla, A.
    Bezerra, K. R. A.
    Lima, P. V. P. S.
    do Nascimento, F. R.
    Arai, E.
    ECOLOGICAL INDICATORS, 2020, 117 (117)
  • [10] Multi-temporal analysis of MODIS data to classify sugarcane crop
    Xavier, AC
    Rudorff, BFT
    Berka, LMS
    Moreira, MA
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (04) : 755 - 768