Improved bounds on horizontal convection

被引:7
|
作者
Rocha, Cesar B. [1 ]
Bossy, Thomas [2 ]
Smith, Stefan G. Llewellyn [3 ,4 ]
Young, William R. [4 ]
机构
[1] Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA
[2] Ecole Normale Super Lyon, F-69007 Lyon, France
[3] Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr, La Jolla, CA 92093 USA
关键词
ocean circulation; variational methods; ENERGY;
D O I
10.1017/jfm.2019.850
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
For the problem of horizontal convection the Nusselt number based on entropy production is bounded from above by C Ra-1/3 as the horizontal convective Rayleigh number Ra -> infinity for some constant C (Siggers et al., J. Fluid Mech., vol. 517, 2004, pp. 55-70). We re-examine the variational arguments leading to this `ultimate regime' by using the Wentzel-Kramers-Brillouin method to solve the variational problem in the Ra -> infinity limit and exhibiting solutions that achieve the ultimate Ra(1/)3 scaling. As expected, the optimizing flows have a boundary layer of thickness similar to Ra-1/3 pressed against the non-uniformly heated surface; but the variational solutions also have rapid oscillatory variation with wavelength similar to Ra-1/3 along the wall. As a result of the exact solution of the variational problem, the constant C is smaller than the previous estimate by a factor of 2.5 for no-slip and 1.6 for no-stress boundary conditions. This modest reduction in C indicates that the inequalities used by Siggers et al. (J. Fluid Mech., vol. 517, 2004, pp. 55-70) are surprisingly accurate.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Bounds on horizontal convection
    Siggers, JH
    Kerswell, RR
    Balmforth, NJ
    [J]. JOURNAL OF FLUID MECHANICS, 2004, 517 : 55 - 70
  • [2] Rayleigh-Benard convection: Improved bounds on the Nusselt number
    Otto, Felix
    Seis, Christian
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (08)
  • [3] Coincidence of the linear and non-linear stability bounds in a horizontal thermal convection problem
    Georgescu, A
    Mansutti, D
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (04) : 603 - 613
  • [4] Horizontal convection
    Hughes, Graham O.
    Griffiths, Ross W.
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2008, 40 : 185 - 208
  • [5] Rotating horizontal convection
    Barkan, Roy
    Winters, Kraig B.
    Smith, Stefan G. Llewellyn
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 723 : 556 - 586
  • [6] Rotating Horizontal Convection
    Gayen, Bishakdatta
    Griffiths, Ross W.
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2022, 54 : 105 - 132
  • [7] CONVECTION IN HORIZONTAL CAVITIES
    SIMPKINS, PG
    CHEN, KS
    [J]. JOURNAL OF FLUID MECHANICS, 1986, 166 : 21 - 39
  • [8] Energetics of horizontal convection
    Gayen, Bishakhdatta
    Griffiths, Ross W.
    Hughes, Graham O.
    Saenz, Juan A.
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 716 : R101 - R1011
  • [9] On the onset of horizontal convection
    Sanmiguel Vila, Carlos
    Discetti, Stefano
    Carlomagno, Giovanni Maria
    Astarita, Tommaso
    Ianiro, Andrea
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 110 : 96 - 108
  • [10] Stratified horizontal convection
    Noto, Daisuke
    Ulloa, Hugo N.
    Yanagisawa, Takatoshi
    Tasaka, Yuji
    [J]. JOURNAL OF FLUID MECHANICS, 2023, 970