Exploring the uncertainty in projected wheat phenology, growth and yield under climate change in China

被引:4
|
作者
Liu, Huan [1 ,2 ,3 ,4 ]
Xiong, Wei [5 ,6 ]
Pequeno, Diego N. L. [7 ]
Hernandez-Ochoa, Ixchel M. [8 ]
Krupnik, Timothy J. [9 ]
Burgueno, Juan [10 ]
Xu, Yinlong [3 ]
机构
[1] Chengdu Univ Informat Technol, Coll Atmospher Sci, Chengdu 610225, Peoples R China
[2] Chengdu Univ Informat Technol, Plateau Atmosphere & Environm Key Lab Sichuan Pro, Chengdu 610225, Peoples R China
[3] Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, Peoples R China
[4] Water Saving Agr Southern Hill Area Key Lab Sichu, Chengdu 610066, Peoples R China
[5] Henan Agr Univ, CIMMYT Henan Innovat Ctr, Zhengzhou 450002, Peoples R China
[6] Int Maize & Wheat Improvement Ctr CIMMYT, Sustainable Intensificat Program, Texcoco 56237, Mexico
[7] Int Maize & Wheat Improvement Ctr CIMMYT, Integrated Dev Program, Texcoco 56237, Mexico
[8] Univ Bonn, Inst Crop Sci & Resource Conservat INRES, Crop Sci Grp, Bonn, Germany
[9] Int Maize & Wheat Improvement Ctr CIMMYT, Sustainable Intensificat Program, Dhaka 1213, Bangladesh
[10] Int Maize & Wheat Improvement Ctr CIMMYT, Biometr & Stat Unit, Texcoco 56237, Mexico
基金
中国国家自然科学基金;
关键词
wheat (Triticum aestivum L; Climate change; Climate -crop modeling; Model ensemble; Uncertainty; CROP MODEL PREDICTIONS; CHANGE IMPACT; WIDE-RANGE; CO2; SIMULATION; PRODUCTIVITY; TEMPERATURE; ADAPTATION; RESPONSES; EXTREMES;
D O I
10.1016/j.agrformet.2022.109187
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Exploring and quantifying the uncertainties in climate impact assessment with multiple climate-crop models is crucial to reducing the total uncertainty and guiding adaptation strategies for crop production. Here, we carried out a climate-crop ensemble simulation to measure the uncertainty in estimated climate impacts on China's wheat productivity by the 2050s. The ensemble included the simulations conducted with the three-DSSAT wheat model ensemble. As for the future climate, five Global Climate projections (GCMs) under two Representative Concentration Pathways (RCP4.5 and 8.5) and two CO2 concentrations were selected. Our results indicate that the median of simulated yield change was between 4.5% -5.5%, and-7.7% --5.6%respectively under elevated and current CO2 concentrations by 2050s compared to 1981-2010. The median of simulated phenology change was nearly-12 --10d In percentage terms, higher uncertainty in national yield change was observed compared to phenology change. The total relative contributions of climate projections, crop models, and RCP scenarios have been more than 70% of the total uncertainty of national phenology and yield change. Crop models have accounted for the largest uncertainty of irrigated yield, while crop models and climate projections almost contributed a similar share of the total uncertainty of rainfed yield. These findings highlight the distribution of uncertainty and sources of uncertainty both at the national and grid scales, which would provide a more comprehensive understanding of uncertainties in future yield prediction. Our results also showed that larger uncertainty has been observed in warmer regions (growing season average temperature > 20 degrees C) than in cooler regions, while the wet regions (growing season rainfall > 400 mm) would suffer smaller uncertainty than dry regions. These findings emphasize the relationships between uncertainty and climate factors, which offers in-sights for improving crop models and designing adaptation strategies.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Quantifying sources of uncertainty in projected wheat yield changes under climate change in eastern Australia
    Wang, Bin
    Liu, De Li
    Waters, Cathy
    Yu, Qiang
    [J]. CLIMATIC CHANGE, 2018, 151 (02) : 259 - 273
  • [2] Quantifying sources of uncertainty in projected wheat yield changes under climate change in eastern Australia
    Bin Wang
    De Li Liu
    Cathy Waters
    Qiang Yu
    [J]. Climatic Change, 2018, 151 : 259 - 273
  • [3] Effects of projected climate change on winter wheat yield in Henan, China
    Zhang, Lin
    Wang, Feng
    Song, Hongquan
    Zhang, Tianning
    Wang, Dong
    Xia, Haoming
    Zhai, Shiyan
    Liu, Yinzhan
    Wang, Tuanhui
    Wang, Yaobin
    Min, Ruiqi
    [J]. JOURNAL OF CLEANER PRODUCTION, 2022, 379
  • [4] Quantifying the impacts of climate change on wheat phenology, yield, and evapotranspiration under irrigated and rainfed conditions
    Ishaque, Wajid
    Osman, Raheel
    Hafiza, Barira Shoukat
    Malghani, Saadatullah
    Zhao, Ben
    Xu, Ming
    Ata-Ul-Karim, Syed Tahir
    [J]. AGRICULTURAL WATER MANAGEMENT, 2023, 275
  • [5] Impacts of climate change on wheat phenology and yield in Indus Basin, Pakistan
    Azmat, Muhammad
    Ilyas, Fatima
    Sarwar, Afia
    Huggel, Christain
    Vaghe, Saeid Ashraf
    Hui, Tao
    Qamar, Muhammad Uzair
    Bilal, Muhammad
    Ahmed, Zeeshan
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 790
  • [6] Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010
    Yujie LIU
    Qiaomin CHEN
    Quansheng GE
    Junhu DAI
    [J]. Science China Earth Sciences, 2018, 61 (08) : 1088 - 1097
  • [7] Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010
    Liu, Yujie
    Chen, Qiaomin
    Ge, Quansheng
    Dai, Junhu
    [J]. SCIENCE CHINA-EARTH SCIENCES, 2018, 61 (08) : 1088 - 1097
  • [8] Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010
    Yujie Liu
    Qiaomin Chen
    Quansheng Ge
    Junhu Dai
    [J]. Science China Earth Sciences, 2018, 61 : 1088 - 1097
  • [9] Uncertainty in simulating wheat yields under climate change
    Asseng, S.
    Ewert, F.
    Rosenzweig, C.
    Jones, J. W.
    Hatfield, J. L.
    Ruane, A. C.
    Boote, K. J.
    Thorburn, P. J.
    Rotter, R. P.
    Cammarano, D.
    Brisson, N.
    Basso, B.
    Martre, P.
    Aggarwal, P. K.
    Angulo, C.
    Bertuzzi, P.
    Biernath, C.
    Challinor, A. J.
    Doltra, J.
    Gayler, S.
    Goldberg, R.
    Grant, R.
    Heng, L.
    Hooker, J.
    Hunt, L. A.
    Ingwersen, J.
    Izaurralde, R. C.
    Kersebaum, K. C.
    Mueller, C.
    Kumar, S. Naresh
    Nendel, C.
    O'Leary, G.
    Olesen, J. E.
    Osborne, T. M.
    Palosuo, T.
    Priesack, E.
    Ripoche, D.
    Semenov, M. A.
    Shcherbak, I.
    Steduto, P.
    Stoeckle, C.
    Stratonovitch, P.
    Streck, T.
    Supit, I.
    Tao, F.
    Travasso, M.
    Waha, K.
    Wallach, D.
    White, J. W.
    Williams, J. R.
    [J]. NATURE CLIMATE CHANGE, 2013, 3 (09) : 827 - 832
  • [10] Uncertainty in simulating wheat yields under climate change
    Asseng S.
    Ewert F.
    Rosenzweig C.
    Jones J.W.
    Hatfield J.L.
    Ruane A.C.
    Boote K.J.
    Thorburn P.J.
    Rötter R.P.
    Cammarano D.
    Brisson N.
    Basso B.
    Martre P.
    Aggarwal P.K.
    Angulo C.
    Bertuzzi P.
    Biernath C.
    Challinor A.J.
    Doltra J.
    Gayler S.
    Goldberg R.
    Grant R.
    Heng L.
    Hooker J.
    Hunt L.A.
    Ingwersen J.
    Izaurralde R.C.
    Kersebaum K.C.
    Müller C.
    Naresh Kumar S.
    Nendel C.
    O'Leary G.
    Olesen J.E.
    Osborne T.M.
    Palosuo T.
    Priesack E.
    Ripoche D.
    Semenov M.A.
    Shcherbak I.
    Steduto P.
    Stöckle C.
    Stratonovitch P.
    Streck T.
    Supit I.
    Tao F.
    Travasso M.
    Waha K.
    Wallach D.
    White J.W.
    Williams J.R.
    [J]. Nature Climate Change, 2013, 3 (9) : 827 - 832