Shack-Hartmann Wavefront Sensing Based on Four-Quadrant Binary Phase Modulation

被引:3
|
作者
Zhao, Mengmeng [1 ,2 ,3 ]
Zhao, Wang [1 ,2 ,3 ]
Yang, Kangjian [1 ,2 ,3 ]
Wang, Shuai [1 ,2 ,3 ]
Yang, Ping [1 ,2 ,3 ]
Zeng, Fengjiao [1 ,2 ,3 ]
Kong, Lingxi [1 ,2 ,3 ]
Yang, Chao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Adapt Opt, Chengdu 610209, Peoples R China
[2] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
wavefront sensing; four-quadrant binary phase modulation; optimization algorithm; Shack-Hartmann wavefront sensor; SENSOR; LASER; RECONSTRUCTION;
D O I
10.3390/photonics9080575
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Aiming at the problem that it is difficult for the conventional Shack-Hartmann wavefront sensor to achieve high-precision wavefront reconstruction with low spatial sampling, a kind of Shack-Hartmann wavefront sensing technology based on four-quadrant binary phase modulation is proposed in this paper. By introducing four-quadrant binary phase modulation into each subaperture, the technology is able to use an optimization algorithm to reconstruct wavefronts with high precision. The feasibility and effectiveness of this method are verified at extreme low spatial frequency by a series of numerical simulations, which show that the proposed method can reliably reconstruct wavefronts with high accuracy with rather low spatial sampling. In addition, the experiment demonstrates that with a 2 x 2 microlens array, the four-quadrant binary phase-modulated Shack-Hartmann wavefront sensor is able to achieve approximately 54% reduction in wavefront reconstitution error over the conventional Shack-Hartmann wavefront sensor.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Scintillation and phase anisoplanatism in Shack-Hartmann wavefront sensing
    Robert, C
    Conan, JM
    Michau, V
    Fusco, T
    Vedrenne, N
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (03) : 613 - 624
  • [2] Anisoplanatism in Shack-Hartmann wavefront sensing
    Robert, C
    Conan, JM
    Michau, V
    Fusco, T
    [J]. OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS VII, 2004, 5572 : 223 - 234
  • [3] Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering
    Wang, Shuai
    Yang, Ping
    Xu, Bing
    Dong, Lizhi
    Ao, Mingwu
    [J]. OPTICS EXPRESS, 2015, 23 (04): : 5052 - 5063
  • [4] History and principles of Shack-Hartmann wavefront sensing
    Platt, BC
    Shack, R
    [J]. JOURNAL OF REFRACTIVE SURGERY, 2001, 17 (05) : S573 - S577
  • [5] Shack-Hartmann wavefront sensing with extended sources
    Michau, V.
    Conan, J. -M.
    Fusco, T.
    Nicolle, M.
    Robert, C.
    Velluet, M. -T.
    Piganeau, E.
    [J]. ATMOSPHERIC OPTICAL MODELING, MEASUREMENT, AND SIMULATION II, 2006, 6303
  • [6] Improving wavefront sensing with a Shack-Hartmann device
    Rais, Martin
    Morel, Jean-Michel
    Thiebaut, Carole
    Delvit, Jean-Marc
    Facciolo, Gabriele
    [J]. APPLIED OPTICS, 2016, 55 (28) : 7836 - 7846
  • [7] Optimization of Virtual Shack-Hartmann Wavefront Sensing
    Yue, Xian
    Yang, Yaliang
    Xiao, Fei
    Dai, Hao
    Geng, Chao
    Zhang, Yudong
    [J]. SENSORS, 2021, 21 (14)
  • [8] Surface Measurement with Shack-Hartmann wavefront sensing technology
    Li, X.
    Zhao, L. P.
    Fang, Z. P.
    Asundi, A.
    Yin, X. M.
    [J]. NINTH INTERNATIONAL SYMPOSIUM ON LASER METROLOGY, PTS 1 AND 2, 2008, 7155
  • [9] Comparison of Shack-Hartmann wavefront sensing and phase-diverse phase retrieval
    Ellerbroek, BL
    Thelen, BJ
    Lee, DJ
    Carrara, DA
    Paxman, RG
    [J]. ADAPTIVE OPTICS AND APPLICATIONS, 1997, 3126 : 307 - 320
  • [10] Comparison of wavefront sensing with the Shack-Hartmann and pyramid sensors
    Clare, RM
    Lane, RG
    [J]. ADVANCEMENTS IN ADAPTIVE OPTICS, PTS 1-3, 2004, 5490 : 1211 - 1222