AN ACCELERATED SUBGRADIENT EXTRAGRADIENT ALGORITHM FOR STRONGLY PSEUDOMONOTONE VARIATIONAL INEQUALITY PROBLEMS

被引:0
|
作者
Abubakar, Jamilu [1 ,2 ,4 ]
Sombut, Kamonrat [3 ]
Rehman, Habib Ur [1 ,2 ]
Ibrahim, Abdulkarim Hassan [1 ,2 ]
机构
[1] KMUTT, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] KMUTT, Fac Sci, KMUTT Fixed Point Theory & ApplicationsRes Grp, KMUTTFixed Point Res Lab, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] Rajamangala Univ Technol, Fac Sci & Technol, Div Math, Thanyaburi, Thailand
[4] Usmanu Danfodiyo Univ Sokoto, Fac Sci, Dept Math, PMB 2346, Sokoto, Nigeria
来源
THAI JOURNAL OF MATHEMATICS | 2020年 / 18卷 / 01期
关键词
Projection Method; Subgradient extragradient method; Inertial type algorithm; Monotone operator; Variational inequality; STRONG-CONVERGENCE; PROJECTION METHOD; FIXED-POINTS; EQUILIBRIUM; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we propose an accelerated subgradient extragradient algorithm for solving variational inequality problems involving strongly pseudomonotone operator by introducing an inertial extrapolation step with time variable step size. The scheme uses a non-summable and diminishing step size without the prior knowledge of the modulus of strong monotonicity and the lipschitz constant of the underlying operator. Furthermore, we prove the strong convergence of a sequence generated by the proposed algorithm to a solution of the problem under mild assumptions. We give numerical experiments to illustrate the inertial - effect and the computational performance of our proposed algorithm in comparison with the existing state of the art algorithms.
引用
下载
收藏
页码:166 / 187
页数:22
相关论文
共 50 条
  • [1] On modified subgradient extragradient methods for pseudomonotone variational inequality problems with applications
    Tan, Bing
    Li, Songxiao
    Qin, Xiaolong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (07):
  • [2] Accelerated Subgradient Extragradient Methods for Variational Inequality Problems
    Duong Viet Thong
    Nguyen The Vinh
    Cho, Yeol Je
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1438 - 1462
  • [3] On modified subgradient extragradient methods for pseudomonotone variational inequality problems with applications
    Bing Tan
    Songxiao Li
    Xiaolong Qin
    Computational and Applied Mathematics, 2021, 40
  • [4] Accelerated Subgradient Extragradient Methods for Variational Inequality Problems
    Duong Viet Thong
    Nguyen The Vinh
    Yeol Je Cho
    Journal of Scientific Computing, 2019, 80 : 1438 - 1462
  • [5] An accelerated extragradient algorithm for bilevel pseudomonotone variational inequality problems with application to optimal control problems
    Bing Tan
    Songxiao Li
    Xiaolong Qin
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [6] A subgradient extragradient algorithm with inertial effects for solving strongly pseudomonotone variational inequalities
    Fan, Jingjing
    Liu, Liya
    Qin, Xiaolong
    OPTIMIZATION, 2020, 69 (09) : 2199 - 2215
  • [7] An accelerated extragradient algorithm for bilevel pseudomonotone variational inequality problems with application to optimal control problems
    Tan, Bing
    Li, Songxiao
    Qin, Xiaolong
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (04)
  • [8] Inertial subgradient extragradient method for solving pseudomonotone variational inequality problems in Banach spaces
    Peng, Zai-Yun
    Peng, Zhi-Ying
    Cai, Gang
    Li, Gao-Xi
    APPLICABLE ANALYSIS, 2024, 103 (10) : 1769 - 1789
  • [9] Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    Themistocles M. Rassias
    Optimization Letters, 2020, 14 : 115 - 144
  • [10] Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    Rassias, Themistocles M.
    OPTIMIZATION LETTERS, 2020, 14 (01) : 115 - 144