Engineering nanometre-scale coherence in soft matter

被引:0
|
作者
Liu, Chaoren [1 ,2 ]
Xiang, Limin [3 ]
Zhang, Yuqi [1 ,2 ]
Zhang, Peng [1 ,2 ]
Beratan, David N. [1 ,2 ]
Li, Yueqi [3 ]
Tao, Nongjian [3 ]
机构
[1] Duke Univ, Dept Chem, Durham, NC 27708 USA
[2] Duke Univ, Dept Biochem & Phys, Durham, NC 27708 USA
[3] Arizona State Univ, Ctr Biosensor & Bioelect, Biodesign Inst, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
SINGLE DNA-MOLECULES; CHARGE-TRANSFER; ENERGY-TRANSFER; TRANSPORT; SPECTROSCOPY; OXIDATION; JUNCTIONS; HAIRPINS;
D O I
10.1038/NCHEM.2545
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electronic delocalization in redox-active polymers may be disrupted by the heterogeneity of the environment that surrounds each monomer. When the differences in monomer redox-potential induced by the environment are small (as compared with the monomer-monomer electronic interactions), delocalization persists. Here we show that guanine (G) runs in double-stranded DNA support delocalization over 4-5 guanine bases. The weak interaction between delocalized G blocks on opposite DNA strands is known to support partially coherent long-range charge transport. The molecular-resolution model developed here finds that the coherence among these G blocks follows an even-odd orbital-symmetry rule and predicts that weakening the interaction between G blocks exaggerates the resistance oscillations. These findings indicate how sequence can be exploited to change the balance between coherent and incoherent transport. The predictions are tested and confirmed using break-junction experiments. Thus, tailored orbital symmetry and structural fluctuations may be used to produce coherent transport with a length scale of multiple nanometres in soft-matter assemblies, a length scale comparable to that of small proteins.
引用
收藏
页码:941 / 945
页数:5
相关论文
共 50 条
  • [1] Engineering nanometre-scale coherence in soft matter
    Chaoren Liu
    Limin Xiang
    Yuqi Zhang
    Peng Zhang
    David N. Beratan
    Yueqi Li
    Nongjian Tao
    Nature Chemistry, 2016, 8 : 941 - 945
  • [2] A nanometre-scale mechanical electrometer
    A. N. Cleland
    M. L. Roukes
    Nature, 1998, 392 : 160 - 162
  • [3] Nanometre-scale mechanical electrometer
    Nature, 6672 (160-162):
  • [4] A nanometre-scale mechanical electrometer
    Cleland, AN
    Roukes, ML
    NATURE, 1998, 392 (6672) : 160 - 162
  • [5] Nanometre-scale molecular ribbons
    Breidenbach, S
    Ohren, S
    Vogtle, F
    CHEMISTRY-A EUROPEAN JOURNAL, 1996, 2 (07) : 832 - 837
  • [6] Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders
    Heilmann, RK
    Chen, CG
    Konkola, PT
    Schattenburg, ML
    NANOTECHNOLOGY, 2004, 15 (10) : S504 - S511
  • [7] Engineering nanometer-scale coherence in soft matter
    Liu, Chaoren
    Zhang, Yuqi
    Zhang, Peng
    Beratan, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [8] Nanometre-scale thermometry in a living cell
    G. Kucsko
    P. C. Maurer
    N. Y. Yao
    M. Kubo
    H. J. Noh
    P. K. Lo
    H. Park
    M. D. Lukin
    Nature, 2013, 500 : 54 - 58
  • [9] Nanometre-scale thermometry in a living cell
    Kucsko, G.
    Maurer, P. C.
    Yao, N. Y.
    Kubo, M.
    Noh, H. J.
    Lo, P. K.
    Park, H.
    Lukin, M. D.
    NATURE, 2013, 500 (7460) : 54 - U71
  • [10] The mechanics of nanometre-scale molecular contacts
    Busuttil, Katerina
    Nikogeorgos, Nikolaos
    Zhang, Zhenyu
    Geoghegan, Mark
    Hunter, Christopher A.
    Leggett, Graham J.
    FARADAY DISCUSSIONS, 2012, 156 : 325 - 341