Hierarchical Task-Space Optimal Covariance Control With Chance Constraints

被引:2
|
作者
Lee, Jaemin [1 ]
Bakolas, Efstathios [2 ]
Sentis, Luis [2 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
来源
基金
美国国家科学基金会;
关键词
Task analysis; Robots; Optimization; Aerospace electronics; Uncertainty; Stochastic systems; Robot sensing systems; Stochastic control; hierarchical task-space control; robotics; OPERATIONAL SPACE; SYSTEMS; MOTION;
D O I
10.1109/LCSYS.2022.3153094
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents a new control paradigm applicable to nonlinear systems such as robots subject to chance and covariance assignment constraints which we refer to as hierarchical optimal covariance control. To the best of our knowledge, this is the first study to formulate the hierarchical optimal covariance control problem involving multiple operational tasks. The framework is defined as a multi-stage optimization problem considering multiple hierarchical tasks specified in lexicographic order. Towards this goal, we first approximate the nonlinear dynamic model of a robot into multiple linear stochastic systems by linearizing the model along given trajectories. We then project these stochastic models onto the null-space of the previous task models for efficiently solving lexicographical optimization. In addition, we specify probability functions to account for chance constraints using the Whittacker M function. We formulate the chance constraints as a positive semi-definite matrix constraint and solve the hierarchical optimal covariance control problem using sequential semi-definite programming. We demonstrate that this procedure yields higher accuracy for multiple hierarchical tasks than employing deterministic operational space control models.
引用
收藏
页码:2359 / 2364
页数:6
相关论文
共 50 条
  • [1] Task-space Setpoint Control of Robots with Dual Task-space Information
    Cheah, C. C.
    Slotine, J. J. E.
    [J]. ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7, 2009, : 3708 - +
  • [2] Optimal Covariance Control for Stochastic Systems Under Chance Constraints
    Okamoto, Kazuhide
    Goldshtein, Maxim
    Tsiotras, Panagiotis
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (02): : 266 - 271
  • [3] Prioritized Optimization for Task-Space Control
    de Lasa, Martin
    Hertzmann, Aaron
    [J]. 2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 5755 - 5762
  • [4] Optimal Task-Space Tracking With Minimum Manipulator Reconfiguration
    Yang, Tong
    Miro, Jaime Valls
    Wang, Yue
    Xiong, Rong
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 5079 - 5086
  • [5] Global task-space adaptive control of robot
    Li, Xiang
    Cheah, Chien Chern
    [J]. AUTOMATICA, 2013, 49 (01) : 58 - 69
  • [6] Robust task-space control of hydraulic robots
    Becker, O
    Pietsch, I
    Hesselbach, J
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2003, : 4360 - 4365
  • [7] Learning Task-Space Tracking Control with Kernels
    Duy Nguyen-Tuong
    Peters, Jan
    [J]. 2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 704 - 709
  • [8] Task-Space Control of Extensible Continuum Manipulators
    Kapadia, Apoorva
    Walker, Ian D.
    [J]. 2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 1087 - 1092
  • [9] FUZZY TASK-SPACE CONTROL OF A WELDING ROBOT
    Fateh, Mohammad M.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2010, 25 (04): : 372 - 378
  • [10] Adaptive Task-Space Cooperative Tracking Control of Networked Robotic Manipulators Without Task-Space Velocity Measurements
    Liang, Xinwu
    Wang, Hesheng
    Liu, Yun-Hui
    Chen, Weidong
    Hu, Guoqiang
    Zhao, Jie
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (10) : 2386 - 2398