Upper and lower bounds for the tails of the distribution of the condition number of a Gaussian matrix

被引:11
|
作者
Azaïs, JM
Wschebor, M
机构
[1] Univ Toulouse 3, UMR CNRS C55830, Lab Stat & Probabil, F-31062 Toulouse, France
[2] Univ Republica, Fac Ciencias, Ctr Matemat, Montevideo 11400, Uruguay
关键词
random matrices; condition number; eigenvalue distribution; Rice formulae;
D O I
10.1137/S0895479803429764
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an m x m real random matrix with independently and identically distributed standard Gaussian entries. We prove that there exist universal positive constants c and C such that the tail of the probability distribution of the condition number kappa(A) satisfies the inequalities c/x < P{kappa(A) > mx} < C/x for every x > 1. The proof requires a new estimation of the joint density of the largest and the smallest eigenvalues of A(T)A which follows from a formula for the expectation of the number of zeros of a certain random field defined on a smooth manifold.
引用
收藏
页码:426 / 440
页数:15
相关论文
共 50 条