On stringy de Sitter spacetimes

被引:6
|
作者
Berglund, Per [1 ]
Hubsch, Tristan [2 ]
Minic, Djordje [3 ]
机构
[1] Univ New Hampshire, Dept Phys & Astron, 9 Lib Way, Durham, NH 03824 USA
[2] Howard Univ, Dept Phys & Astron, 2355 Sixth St NW, Washington, DC 20059 USA
[3] Virginia Tech, Dept Phys, 850 West Campus Dr, Blacksburg, VA 24061 USA
关键词
F-Theory; String theory and cosmic strings; BACKGROUND-FIELD METHOD; CALABI-YAU MANIFOLDS; TOPOLOGY CHANGE; DUALITY; SUPERGRAVITY; COHOMOLOGY; GEOMETRY; MODELS; VACUA; PAIR;
D O I
10.1007/JHEP12(2019)166
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We reexamine a family of models with a 3+1-dimensional de Sitter spacetime obtained in the standard tree-level low-energy limit of string theory with a non-trivial anisotropic axion-dilaton background. While such limiting approximations are encouraging but incomplete, our analysis reveals a host of novel features, and shows these models to relate standard and well understood supersymmetric string theory solutions. Finally, we conjecture that this de Sitter spacetime naturally arises by including more of the stringy degrees of freedom, such as a recently advanced variant of the non-commutative phase-space formalism, as well as the analytic continuation of a complex two-dimensional Fano variety arising as a small resolution in a Calabi-Yau 5-fold.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] On stringy de Sitter spacetimes
    Per Berglund
    Tristan Hübsch
    Djordje Minić
    [J]. Journal of High Energy Physics, 2019
  • [2] Lifetime of stringy de Sitter vacua
    Westphal, Alexander
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (01):
  • [3] Fall of stringy de Sitter spacetime
    Frey, AR
    Lippert, M
    Williams, B
    [J]. PHYSICAL REVIEW D, 2003, 68 (04)
  • [4] Designer de Sitter spacetimes
    Schleich, K.
    Witt, D. M.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2008, 86 (04) : 591 - 595
  • [5] Vortices in de Sitter spacetimes
    Ghezelbash, AM
    Mann, RB
    [J]. PHYSICS LETTERS B, 2002, 537 (3-4) : 329 - 339
  • [6] Acceleration in de Sitter spacetimes
    Cotaescu, Ion I.
    [J]. EPL, 2015, 109 (04)
  • [7] Uniqueness of de Sitter and Schwarzschild-de Sitter spacetimes
    Masood-ul-Alam, A. K. M.
    Yu, Wenhua
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2015, 23 (02) : 377 - 387
  • [8] Stringy de Sitter brane-worlds
    Hübsch, T
    [J]. PARTICLE PHYSICS AND THE UNIVERSE, 2005, 98 : 261 - 271
  • [9] Stringy Bubbles Solve de Sitter Troubles
    Berglund, Per
    Hubsch, Tristan
    Minic, Djordje
    [J]. UNIVERSE, 2021, 7 (10)
  • [10] Symmetries of the asymptotically de Sitter spacetimes
    Kaminski, Wojciech
    Kolanowski, Maciej
    Lewandowski, Jerzy
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (19)