Fuzzy resilient control for synchronizing chaotic systems with time-variant delay and external disturbance

被引:3
|
作者
Tai, Weipeng [1 ,2 ]
Zuo, Dandan [1 ]
Han, Jing [1 ]
Zhou, Jianping [1 ]
机构
[1] Anhui Univ Technol, Sch Comp Sci & Technol, Maanshan 243032, Peoples R China
[2] Anhui Univ Technol, Res Inst Informat Technol, Maanshan 243000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Chaos synchronization; time delay; T-S fuzzy model; resilient control; INFINITY FILTER DESIGN; NEURAL-NETWORKS; ADAPTIVE SYNCHRONIZATION; STABILITY ANALYSIS;
D O I
10.1142/S0217979221501770
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper focuses on the issue of fuzzy resilient control for synchronizing chaotic systems with time-variant delay and external disturbance. The goal is to design a fuzzy resilient controller with additive gain perturbations to guarantee that not only the drive and response systems are asymptotically synchronized in the absence of external disturbance, but also the synchronization error system has a prescribed disturbance attenuation index under the zero initial condition. By utilizing an appropriate Lyapunov-Krasovskii functional, the Bessel-Legendre inequality, and the reciprocally convex combination technique, a criterion on the stability and Script capital H-infinity performance of the synchronization error system is derived. Then, by means of some decoupling methods, a design scheme of the fuzzy resilient controller is developed. Finally, one numerical example is provided to examine the effectiveness of the fuzzy resilient controller design scheme.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A Novel Approach for Synchronizing of Fractional Order Uncertain Chaotic Systems in the Presence of Unknown Time-Variant Delay and Disturbance
    Wu, Linli
    Fu, Xiuwei
    [J]. INFORMATION TECHNOLOGY AND CONTROL, 2022, 51 (02): : 221 - 234
  • [2] Resilient Consensus Control for Networked Lagrangian Systems With Constant Time Delay and External Disturbance
    Li, Xiaolei
    Liu, Xiaokang
    Wang, Jiange
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4507 - 4512
  • [3] Optimal control of linear fuzzy time-variant controlled systems
    Zarei, H.
    Khastan, A.
    Zafari, A.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2020, 17 (05): : 1 - 12
  • [4] Performance assessment of MIMO control systems with time-variant disturbance dynamics
    Xu, Fangwei
    Huang, Biao
    Tamayo, Edgar C.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (09) : 2144 - 2154
  • [5] Non-fragile sampled-data control for synchronizing Markov jump Lur'e systems with time-variant delay
    Zuo, Dandan
    Wang, Wansheng
    Zhang, Lulu
    Han, Jing
    Chen, Ling
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (07): : 4632 - 4658
  • [6] Design of Disturbance Rejection-Based Quantized Resilient Control for Fuzzy Chaotic Systems
    Monisha, S.
    Satheesh, T.
    Aravinth, N.
    Sakthivel, R.
    Ma, Yong-Ki
    [J]. IEEE ACCESS, 2023, 11 : 107605 - 107615
  • [7] Stability of discrete time-variant linear delay systems and applications to network control
    Sichitiu, ML
    Bauer, PH
    [J]. ICECS 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-III, CONFERENCE PROCEEDINGS, 2001, : 985 - 989
  • [8] Exponential H∞ stabilization of chaotic systems with time-varying delay and external disturbance via intermittent control
    Zhang, Zhi-Ming
    He, Yong
    Wu, Min
    [J]. INFORMATION SCIENCES, 2017, 421 : 167 - 180
  • [9] Chaotic Synchronizing Systems with Zero Time Delay and Free Couple via Iterative Learning Control
    Cheng, Chun-Kai
    Chao, Paul C. -P.
    [J]. APPLIED SCIENCES-BASEL, 2018, 8 (02):
  • [10] Performance assessment of control loops with time-variant disturbance dynamics
    Olaleye, F
    Huang, B
    Tamayo, E
    [J]. JOURNAL OF PROCESS CONTROL, 2004, 14 (08) : 867 - 877