Neuromorphic Architectures for Spiking Deep Neural Networks

被引:0
|
作者
Indiveri, Giacomo [1 ]
Corradi, Federico
Qiao, Ning
机构
[1] Univ Zurich, Inst Neuroinformat, Zurich, Switzerland
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a full custom hardware implementation of a deep neural network, built using multiple neuromorphic VLSI devices that integrate analog neuron and synapse circuits together with digital asynchronous logic circuits. The deep network comprises an event-based convolutional stage for feature extraction connected to a spike-based learning stage for feature classification. We describe the properties of the chips used to implement the network and present preliminary experimental results that validate the approach proposed.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Simplifying Deep Neural Networks for Neuromorphic Architectures
    Chung, Jaeyong
    Shin, Taehwan
    [J]. 2016 ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2016,
  • [2] Neuromorphic deep spiking neural networks for seizure detection
    Yang, Yikai
    Eshraghian, Jason K.
    Truong, Nhan Duy
    Nikpour, Armin
    Kavehei, Omid
    [J]. NEUROMORPHIC COMPUTING AND ENGINEERING, 2023, 3 (01):
  • [3] Benchmarking Deep Spiking Neural Networks on Neuromorphic Hardware
    Ostrau, Christoph
    Homburg, Jonas
    Klarhorst, Christian
    Thies, Michael
    Rueckert, Ulrich
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT II, 2020, 12397 : 610 - 621
  • [4] TRAINING DEEP SPIKING NEURAL NETWORKS FOR ENERGY-EFFICIENT NEUROMORPHIC COMPUTING
    Srinivasan, Gopalakrishnan
    Lee, Chankyu
    Sengupta, Abhronil
    Panda, Priyadarshini
    Sarwar, Syed Shakib
    Roy, Kaushik
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8549 - 8553
  • [5] An Efficient Event-driven Neuromorphic Architecture for Deep Spiking Neural Networks
    Duy-Anh Nguyen
    Duy-Hicu Bui
    Iacopi, Francesca
    Xuan-Tu Tran
    [J]. 32ND IEEE INTERNATIONAL SYSTEM ON CHIP CONFERENCE (IEEE SOCC 2019), 2019, : 144 - 149
  • [6] Compiling Spiking Neural Networks to Neuromorphic Hardware
    Song, Shihao
    Balaji, Adarsha
    Das, Anup
    Kandasamy, Nagarajan
    Shackleford, James
    [J]. 21ST ACM SIGPLAN/SIGBED CONFERENCE ON LANGUAGES, COMPILERS, AND TOOLS FOR EMBEDDED SYSTEMS (LCTES '20), 2020, : 38 - 50
  • [7] Mapping Spiking Neural Networks to Neuromorphic Hardware
    Balaji, Adarsha
    Das, Anup
    Wu, Yuefeng
    Huynh, Khanh
    Dell'Anna, Francesco G.
    Indiveri, Giacomo
    Krichmar, Jeffrey L.
    Dutt, Nikil D.
    Schaafsma, Siebren
    Catthoor, Francky
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (01) : 76 - 86
  • [8] Abisko: Deep codesign of an architecture for spiking neural networks using novel neuromorphic materials
    Vetter, Jeffrey S.
    Date, Prasanna
    Fahim, Farah
    Kulkarni, Shruti R.
    Maksymovych, Petro
    Talin, A. Alec
    Tallada, Marc Gonzalez
    Vanna-iampikul, Pruek
    Young, Aaron R.
    Brooks, David
    Cao, Yu
    Gu-Yeon, Wei
    Lim, Sung Kyu
    Liu, Frank
    Marinella, Matthew
    Sumpter, Bobby
    Miniskar, Narasinga Rao
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2023, 37 (3-4): : 351 - 379
  • [9] A Survey of Neuromorphic Computing Based on Spiking Neural Networks
    ZHANG Ming
    GU Zonghua
    PAN Gang
    [J]. Chinese Journal of Electronics, 2018, 27 (04) : 667 - 674
  • [10] Neuromorphic Sentiment Analysis Using Spiking Neural Networks
    Chunduri, Raghavendra K.
    Perera, Darshika G.
    [J]. SENSORS, 2023, 23 (18)