An analytical model for cleanup of yield-stress fluids in hydraulic fractures

被引:10
|
作者
Balhoff, MT [1 ]
Miller, MJ [1 ]
机构
[1] Louisiana State Univ, Baton Rouge, LA 70803 USA
来源
SPE JOURNAL | 2005年 / 10卷 / 01期
关键词
D O I
10.2118/77596-PA
中图分类号
TE [石油、天然气工业];
学科分类号
0820 ;
摘要
The retention of fracturing fluid in a proppant pack reduces the dimensionless fracture conductivity, F-ed, resulting in poor well productivity regardless of fluid type (gelled oil, crosslinked polymers, viscoelastic surfactants, or foams). Analytical expressions derived in this paper can be used to calculate the extent of fracture cleanup under a set of production conditions. Several dimensionless parameters describing the fluid, fracture, and reservoir properties are introduced that affect the equilibrium cleanup. A second, transient, fracture-cleanup model is also proposed and is used to estimate the dimensionless-parameter values. The equilibrium model predicts that cleanup increases greatly with decreasing dimensionless yield stress of the fracturing fluid. The magnitude of cleanup is also greater for cases in which the permeability ratio of the clean portion of the,fracture to the fouled portion is high. The cleanup is expected to increase with an increase in the ratio of reservoir and fracture mobility until an optimum is reached, and then decrease with increasing the mobility ratio. The critical process of parameter estimation is achieved by making experimental measurements and by history matching published fracture flowback data using the transient model.
引用
收藏
页码:5 / 12
页数:8
相关论文
共 50 条
  • [1] Carbomer microgels as model yield-stress fluids
    Jaworski, Zdzislaw
    Spychaj, Tadeusz
    Story, Anna
    Story, Grzegorz
    [J]. REVIEWS IN CHEMICAL ENGINEERING, 2022, 38 (07) : 881 - 919
  • [2] A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids
    de Souza Mendes, Paulo R.
    Thompson, Roney L.
    [J]. RHEOLOGICA ACTA, 2013, 52 (07) : 673 - 694
  • [3] Sliding flows of yield-stress fluids
    Chaparian, Emad
    Tammisola, Outi
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 911
  • [4] A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids
    Paulo R. de Souza Mendes
    Roney L. Thompson
    [J]. Rheologica Acta, 2013, 52 : 673 - 694
  • [5] Displacement of yield-stress fluids in a fracture
    Boronin, S. A.
    Osiptsov, A. A.
    Desroches, J.
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2015, 76 : 47 - 63
  • [6] Slow dripping of yield-stress fluids
    Al Khatib, MAM
    Wilson, SDR
    [J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (04): : 687 - 690
  • [7] Designing and transforming yield-stress fluids
    Nelson, Arif Z.
    Schweizer, Kenneth S.
    Rauzan, Brittany M.
    Nuzzo, Ralph G.
    Vermant, Jan
    Ewoldt, Randy H.
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2019, 23 (05):
  • [8] Drop impact of yield-stress fluids
    Luu, Li-Hua
    Forterre, Yoel
    [J]. JOURNAL OF FLUID MECHANICS, 2009, 632 : 301 - 327
  • [9] Capillary rise of yield-stress fluids
    Geraud, Baudouin
    Jorgensen, Loren
    Petit, Laure
    Delanoe-Ayari, Helene
    Jop, Pierre
    Barentin, Catherine
    [J]. EPL, 2014, 107 (05)
  • [10] Embedded droplet printing in yield-stress fluids
    Nelson, Arif Z.
    Kundukad, Binu
    Wong, Wai Kuan
    Khan, Saif A.
    Doyle, Patrick S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (11) : 5671 - 5679