Numerical optimization for symmetric tensor decomposition

被引:40
|
作者
Kolda, Tamara G. [1 ]
机构
[1] Sandia Natl Labs, Livermore, CA 94550 USA
关键词
Symmetric; Outer product; Canonical polyadic; Tensor decomposition; Completely positive; Nonnegative; ALGORITHMS; APPROXIMATION; RANK-1;
D O I
10.1007/s10107-015-0895-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the problem of decomposing a real-valued symmetric tensor as the sum of outer products of real-valued vectors. Algebraic methods exist for computing complex-valued decompositions of symmetric tensors, but here we focus on real-valued decompositions, both unconstrained and nonnegative, for problems with low-rank structure. We discuss when solutions exist and how to formulate the mathematical program. Numerical results show the properties of the proposed formulations (including one that ignores symmetry) on a set of test problems and illustrate that these straightforward formulations can be effective even though the problem is nonconvex.
引用
收藏
页码:225 / 248
页数:24
相关论文
共 50 条
  • [1] Numerical optimization for symmetric tensor decomposition
    Tamara G. Kolda
    Mathematical Programming, 2015, 151 : 225 - 248
  • [2] Symmetric tensor decomposition
    Brachat, Jerome
    Comon, Pierre
    Mourrain, Bernard
    Tsigaridas, Elias
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (11-12) : 1851 - 1872
  • [3] ALGEBRAIC AND OPTIMIZATION BASED ALGORITHMS FOR MULTIVARIATE REGRESSION USING SYMMETRIC TENSOR DECOMPOSITION
    Hendrikx, Stijn
    Bousse, Martijn
    Vervliet, Nico
    De Lathauwer, Lieven
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 475 - 479
  • [4] Gradient Descent for Symmetric Tensor Decomposition
    Jian-Feng Cai
    Haixia Liu
    Yang Wang
    AnnalsofAppliedMathematics, 2022, 38 (04) : 385 - 413
  • [5] Skew-symmetric tensor decomposition
    Arrondo, Enrique
    Bernardi, Alessandra
    Marques, Pedro Macias
    Mourrain, Bernard
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (02)
  • [6] On the Decomposition of Tensor Representations of Symmetric Groups
    Nikitin, P. P.
    Tsilevich, N. V.
    Vershik, A. M.
    ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (04) : 895 - 908
  • [7] On the Decomposition of Tensor Representations of Symmetric Groups
    P. P. Nikitin
    N. V. Tsilevich
    A. M. Vershik
    Algebras and Representation Theory, 2019, 22 : 895 - 908
  • [8] DECOMPOSITION OF SYMMETRIC TENSOR AND ITS APPLICATION
    王敏中
    Applied Mathematics and Mechanics(English Edition), 1984, (06) : 1813 - 1816
  • [9] SCALABLE SYMMETRIC TUCKER TENSOR DECOMPOSITION
    Jin, Ruhui
    Kileel, Joe
    Kolda, Tamara g.
    Ward, Rachel
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (04) : 1746 - 1781
  • [10] Optimization of Symmetric Tensor Computations
    Cai, Jonathon
    Baskaran, Muthu
    Meister, Benoit
    Lethin, Richard
    2015 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2015,