On a new inequality in the planar three-body problem

被引:0
|
作者
Barbosu, Michael [1 ]
Wiandt, Tamas [1 ]
机构
[1] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
关键词
Planar three-body problem; Regions of possible motion; Domain of admissible configurations; Sundman's inequality; STABILITY;
D O I
10.1007/s10509-016-2793-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper presents a new inequality in the planar three-body problem (P3BP). The inequality complements Sundman's inequality and we show that classical inequalities that determine the regions of possiblemotion and the domain of admissible configurations are direct consequences of our result. Additionally, it offers opportunities to further explore other qualitative features of the planar three-body problem.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] On a new inequality in the planar three-body problem
    Michael Barbosu
    Tamas Wiandt
    [J]. Astrophysics and Space Science, 2016, 361
  • [2] Searching for New Nontrivial Choreographies for the Planar Three-Body Problem
    Hristov, I.
    Hristova, R.
    Puzynin, I.
    Puzynina, T.
    Sharipov, Z.
    Tukhliev, Z.
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 2024, 55 (03) : 495 - 497
  • [3] Planar three-body problem in rendezvous coordinates
    Humi, M
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2005, 28 (03) : 553 - 557
  • [4] Retrograde resonance in the planar three-body problem
    Morais, M. H. M.
    Namouni, F.
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2013, 117 (04): : 405 - 421
  • [5] Quasiperiodic motions in the planar three-body problem
    Féjoz, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 183 (02) : 303 - 341
  • [6] Symbolic dynamics in the planar three-body problem
    R. Moeckel
    [J]. Regular and Chaotic Dynamics, 2007, 12 : 449 - 475
  • [7] Retrograde resonance in the planar three-body problem
    M. H. M. Morais
    F. Namouni
    [J]. Celestial Mechanics and Dynamical Astronomy, 2013, 117 : 405 - 421
  • [8] Symbolic dynamics in the planar three-body problem
    Moeckel, R.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2007, 12 (05): : 449 - 475
  • [9] On a planar circular restricted charged three-body problem
    Abimael Bengochea
    Claudio Vidal
    [J]. Astrophysics and Space Science, 2015, 358
  • [10] Lunar capture in the planar restricted three-body problem
    Yi Qi
    Shijie Xu
    [J]. Celestial Mechanics and Dynamical Astronomy, 2014, 120 : 401 - 422