Fuzzy Genetic Network Programming with Reinforcement Learning for Mobile Robot Navigation

被引:0
|
作者
Sendari, Siti [1 ]
Mabu, Shingo [1 ]
Hirasawa, Kotaro [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Wakamatsu Ku, Kitakyushu, Fukuoka 8080135, Japan
关键词
Fuzzy logic; Genetic Network Programming; Reinforcement Learning; Robustness; Wall following behavior; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes Fuzzy Genetic Network Programming with Reinforcement Learning (Fuzzy GNP-RL). This method integrates fuzzy logic to the conventional GNP-RL. The new part of the proposed method is fuzzy judgment nodes. Fuzzy GNP-RL provides flexibility to determine the appropriate next node by the probabilistic transition instead of that by the threshold values on GNP-RL. The simulation of the wall following behavior of a Khepera robot is used to evaluate the performance of Fuzzy GNP-RL compared with that of GNP-RL. The result shows that Fuzzy GNP-RL is more robust than GNP-RL.
引用
收藏
页码:2243 / 2248
页数:6
相关论文
共 50 条
  • [1] Fuzzy Genetic Network Programming with Noises for Mobile Robot Navigation
    Sendari, Siti
    Mabu, Shingo
    Tjahjadi, Andre
    Hirasawa, Kotaro
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2011, 15 (07) : 767 - 776
  • [2] Collision Prediction based Genetic Network Programming-Reinforcement Learning for Mobile Robot Navigation in Unknown Dynamic Environments
    Findi, Ahmed H. M.
    Marhaban, Mohammad H.
    Kamil, Raja
    Hassan, Mohd Khair
    [J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2017, 12 (02) : 890 - 903
  • [3] Two-Stage Reinforcement Learning Based on Genetic Network Programming for Mobile Robot
    Sendari, Siti
    Mabu, Shingo
    Hirasawa, Kotaro
    [J]. 2012 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE), 2012, : 95 - 100
  • [4] Using the GTSOM Network for Mobile Robot Navigation with Reinforcement Learning
    Menegaz, Mauricio
    Engel, Paulo M.
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 716 - 720
  • [5] Multi-Behaviour Robot Control using Genetic Network Programming with Fuzzy Reinforcement Learning
    Wang, W.
    Reyes, N. H.
    Barczak, A. L. C.
    Susnjak, T.
    Sincak, Peter
    [J]. ROBOT INTELLIGENCE TECHNOLOGY ANDAPPLICATIONS 3, 2015, 345 : 151 - 158
  • [6] Fuzzy situation based navigation of autonomous mobile robot using reinforcement learning
    Guanlao, R
    Musilek, P
    Ahmed, F
    Kaboli, A
    [J]. NAFIPS 2004: ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1AND 2: FUZZY SETS IN THE HEART OF THE CANADIAN ROCKIES, 2004, : 820 - 825
  • [7] Deep Reinforcement Learning for Mobile Robot Navigation
    Gromniak, Martin
    Stenzel, Jonas
    [J]. 2019 4TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS 2019), 2019, : 68 - 73
  • [8] Supervised fuzzy reinforcement learning for robot navigation
    Fathinezhad, Fatemeh
    Derhami, Vali
    Rezaeian, Mehdi
    [J]. APPLIED SOFT COMPUTING, 2016, 40 : 33 - 41
  • [9] A genetic approach to optimizing the values of parameters in reinforcement learning for navigation of a mobile robot
    Kamei, K
    Ishikawa, M
    [J]. NEURAL INFORMATION PROCESSING, 2004, 3316 : 1148 - 1153