Lattice Boltzmann simulation of solid-liquid phase change with nonlinear density variation

被引:0
|
作者
Li, Qing [1 ]
Yang, Hao [1 ]
Huang, Rongzong [1 ]
机构
[1] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
NATURAL-CONVECTION; NUMERICAL-SIMULATION; HEAT-TRANSFER; MODEL; CAVITY;
D O I
10.1063/5.0070407
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Solid-liquid phase change problems have been extensively investigated by the lattice Boltzmann (LB) method in the past two decades, and the usual Boussinesq approximation with the assumption that the fluid density linearly varies with the temperature is widely applied. However, the actual variation of the fluid density with the temperature could be very complex for the phase change material near its solidus and liquidus temperatures. In this work, a double-distribution-function LB model is adopted to simulate the melting and solidification processes in a square cavity. The buoyancy force is directly calculated via the fluid density determined by temperature rather than the usual volume expansivity and temperature difference, and thus the present LB model can handle the nonlinear variation of the fluid density. Four different density variations (i.e., linear expansion, convex expansion, concave expansion, and water) are considered. The simulation results show that the convex and concave expansion variations can be roughly approximated by the linear expansion variation for both the melting and solidification processes. Due to the anomalous expansion over the temperature range of 0-4.0293 degrees C, the water variation cannot be approximated by the linear expansion variation, unless the involved temperature range is relatively large. The density variation determines the structure and strength of natural convection, thereby significantly affecting the melting and solidification processes. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A new lattice Boltzmann model for solid-liquid phase change
    Huang, Rongzong
    Wu, Huiying
    Cheng, Ping
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 59 : 295 - 301
  • [2] Lattice Boltzmann models for axisymmetric solid-liquid phase change
    Li, Dong
    Ren, Qinlong
    Tong, Zi-Xiang
    He, Ya-Ling
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 112 : 795 - 804
  • [3] Lattice Boltzmann Method Simulation of Power-Law Phase Change Materials' Solid-Liquid Phase Change
    Peng, Cheng
    Liu, Yi
    Li, Ling
    [J]. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2022, 36 (02) : 233 - 241
  • [4] A generalized lattice Boltzmann model for solid-liquid phase change with variable density and thermophysical properties
    Zhao, Yong
    Pereira, Gerald G.
    Kuang, Shibo
    Chai, Zhenhua
    Shi, Baochang
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 104
  • [5] Lattice Boltzmann simulation for three-dimensional natural convection with solid-liquid phase change
    Hu, Yang
    Li, Decai
    Shu, Shi
    Niu, Xiaodong
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 113 : 1168 - 1178
  • [6] The Enthalpy Based Lattice Boltzmann Model for Solid-Liquid Phase Change
    Huo, Yu-Tao
    Pang, Xiao-Wen
    Rao, Zhong-Hao
    [J]. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2021, 42 (12): : 3201 - 3206
  • [7] Efficient lattice Boltzmann method for electrohydrodynamic solid-liquid phase change
    Luo, Kang
    Perez, Alberto T.
    Wu, Jian
    Yi, Hong-Liang
    Tan, He-Ping
    [J]. PHYSICAL REVIEW E, 2019, 100 (01)
  • [8] Lattice Boltzmann simulation for solid-liquid phase change phenomenon of phase change material under constant heat flux
    Huo, Yutao
    Rao, Zhonghao
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 86 : 197 - 206
  • [9] Three-dimensional lattice Boltzmann models for solid-liquid phase change
    Li, Dong
    Tong, Zi-Xiang
    Ren, Qinlong
    He, Ya-Ling
    Tao, Wen-Quan
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 115 : 1334 - 1347
  • [10] Hyperbolic Lattice Boltzmann Method and Discrete Boltzmann Method for Solid-Liquid Phase Change Problem
    Srivastava, Snehil
    Mariappan, Panchatcharam
    [J]. MATHEMATICS IN COMPUTER SCIENCE, 2023, 17 (02)