Existence of a rigid core in the flow of a compressible Bingham fluid under the action of a homogeneous force

被引:1
|
作者
Basov, IV
机构
[1] Russian Acad Sci, SB, Lavrentyev Inst Hydronam, Novosibirsk 630090, Russia
[2] Max Planck Inst Math Sci, Leipzig, Germany
关键词
Bingham fluid; rigid zone; a priori estimate; regularity;
D O I
10.1007/s00021-005-0179-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A compressible one-dimensional plain Bingham flow starting in equilibrium under the action of a time-increasing spatially homogeneous mass force is investigated. A lower estimate for the width of a rigid zone is obtained. The estimate shows that the rigid zone converges to the whole interval for t tends to zero. In other words, existence of a rigid core is established. As a supplementary result, additional smoothness of solutions to the system considered is established.
引用
收藏
页码:515 / 528
页数:14
相关论文
共 50 条
  • [1] Existence of a Rigid Core in the Flow of a Compressible Bingham Fluid under the Action of a Homogeneous Force
    Ivan V. Basov
    Journal of Mathematical Fluid Mechanics, 2005, 7 : 515 - 528
  • [2] ON THE MOTION OF RIGID BODIES IN A COMPRESSIBLE VISCOUS FLUID UNDER THE ACTION OF GRAVITATIONAL FORCES
    Ducomet, Bernard
    Necasova, Sarka
    APPLICATIONS OF MATHEMATICS 2012, 2012, : 83 - 98
  • [3] Existence of weak solutions for a Bingham fluid-rigid body system
    Obando, Benjamin
    Takahashi, Takeo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (05): : 1281 - 1309
  • [4] On the squeeze flow of a Bingham fluid between two rigid spheres
    Li, HY
    Huang, WB
    Xu, Y
    Lian, GP
    PARTICULATE SCIENCE AND TECHNOLOGY, 2004, 22 (01) : 1 - 20
  • [5] ON THE MOTION OF RIGID BODIES IN AN INCOMPRESSIBLE OR COMPRESSIBLE VISCOUS FLUID UNDER THE ACTION OF GRAVITATIONAL FORCES
    Ducomet, Bernard
    Necasova, Sarka
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (05): : 1193 - 1213
  • [6] Pressure-driven flow of lignocellulosic biomass: A compressible Bingham fluid
    Duncan, Joshua C.
    Shahravan, Anaram
    Samaniuk, Joseph R.
    Root, Thatcher W.
    Graham, Michael D.
    Klingenberg, Daniel J.
    Scott, C. Tim
    Bourne, Keith J.
    Gleisner, Roland
    JOURNAL OF RHEOLOGY, 2018, 62 (03) : 801 - 815
  • [7] FLOW OF A BINGHAM FLUID UNDER A MONOTONE PERTURBATION
    MARGOLIS, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (03) : 818 - 835
  • [8] Fluid flow profile in the "orthotropic plate+compressible viscous fluid+rigid wall" system under the action of the moving load on the plate
    Akbarov, Surkay D.
    Huseynova, Tarana V.
    COUPLED SYSTEMS MECHANICS, 2020, 9 (03): : 289 - 309
  • [9] Squeeze flow of a Bingham-type fluid with elastic core
    Fusi, L.
    Farina, A.
    Rosso, F.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 78 : 59 - 65
  • [10] Flow of a Bingham fluid in a porous bed under the action of a magnetic field: Application to magneto-hemorheology
    Misra, J. C.
    Adhikary, S. D.
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2017, 20 (03): : 973 - 981