Uniqueness of radially symmetric positive solutions for -Δu+u=up in an annulus

被引:27
|
作者
Felmer, Patricio [2 ,3 ]
Martinez, Salome [2 ,3 ]
Tanaka, Kazunaga [1 ]
机构
[1] Waseda Univ, Dept Math, Sch Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
[2] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento Matemat, UMR2071, CNRS, Santiago, Chile
基金
日本学术振兴会;
关键词
non-linear elliptic equation; radially symmetric solutions; non-degeneracy;
D O I
10.1016/j.jde.2008.06.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove that the semi-linear elliptic partial differential equation -Delta u + u = u(p) in Omega u > 0 in Omega. u = 0 on partial derivative Omega possesses a unique positive radially symmetric solution. Here p > 1 and Omega is the annulus (x epsilon R(N) vertical bar a < vertical bar x vertical bar < b), with N >= 2, 0 < a < b <= infinity. We also show the positive solution is non-degenerate. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1198 / 1209
页数:12
相关论文
共 50 条