The planar Orlicz Minkowski problem in the L1-sense
被引:26
|
作者:
Yijing, Sun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Dept Math, Beijing 100049, Peoples R ChinaUniv Chinese Acad Sci, Dept Math, Beijing 100049, Peoples R China
Yijing, Sun
[1
]
Yiming, Long
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaUniv Chinese Acad Sci, Dept Math, Beijing 100049, Peoples R China
Yiming, Long
[2
,3
]
机构:
[1] Univ Chinese Acad Sci, Dept Math, Beijing 100049, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
In this paper, we solve L-p Minkowski problem for L-1 data and all p < 0, and Orlicz Minkowski problem with two nonlinear terms in L-1 sense. A byproduct is the Blaschke-Santalo inequality, which was previously established for only constant data, and now is shown to hold for L-1 data. (C) 2015 Elsevier Inc. All rights reserved.
机构:
Hubei Univ Nationalities, Dept Math, Enshi 445000, Hubei, Peoples R China
Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, CanadaHubei Univ Nationalities, Dept Math, Enshi 445000, Hubei, Peoples R China
Zhu, Baocheng
Xing, Sudan
论文数: 0引用数: 0
h-index: 0
机构:
Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, CanadaHubei Univ Nationalities, Dept Math, Enshi 445000, Hubei, Peoples R China
Xing, Sudan
Ye, Deping
论文数: 0引用数: 0
h-index: 0
机构:
Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, CanadaHubei Univ Nationalities, Dept Math, Enshi 445000, Hubei, Peoples R China