A computational comparative analysis of the binding mechanism of molnupiravir's active metabolite to RNA-dependent RNA polymerase of wild-type and Delta subvariant AY.4 of SARS-CoV-2

被引:25
|
作者
Celik, Ismail [1 ]
Tallei, Trina E. [2 ]
机构
[1] Erciyes Univ, Fac Pharm, Dept Pharmaceut Chem, Kayseri, Turkey
[2] Sam Ratulangi Univ, Fac Math & Nat Sci, Dept Biol, Manado 95115, North Sulawesi, Indonesia
关键词
binding mechanism; computational analysis; COVID-19; Delta subvariant AY; 4; molnupiravir triphosphate; RNA-dependent RNA polymerase; SARS-CoV-2;
D O I
10.1002/jcb.30226
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The antiviral drug molnupiravir targets the SARS-CoV-2 RNA-dependent RNA polymerase (RdRP) enzyme. Early treatment with molnupiravir reduced the risk of hospitalization or death in at-risk, unvaccinated adults with COVID-19, according to phase 3 clinical trials. Many mutations have occurred within this virus as a result of its widespread distribution. The current study sought to determine whether mutations in the RdRP of Delta subvariant AY.4 (D-AY.4 RdRP) influence the interaction of the enzyme with molnupiravir triphosphate (MTP), the active metabolite of molnupiravir. The interactions between the wild-type (WT) RdRP and D-AY.4 RdRP with MTP were evaluated based on molecular docking and dynamic simulation (MD) studies. The results show that the MTP interaction is stronger and more stable with D-AY.4 RdRP than with WT RdRP. This study provides insight into the potential significance of administering MTP to patients infected with D-AY.4 RdRP, which may have a more favorable chance of alleviating the illness. According to the findings of this study, MTP has a high likelihood of becoming widely used as an anti-SARS-CoV-2 agent. The fact that MTP is not only cytotoxic but also mutagenic to mammalian cells, as well as the possibility that it may cause DNA damage in the host, have all been raised as potential concerns.
引用
收藏
页码:807 / 818
页数:12
相关论文
共 47 条
  • [1] Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2
    Aranda, Juan
    Wieczor, Milosz
    Terrazas, Montserrat
    Brun-Heath, Isabelle
    Orozco, Modesto
    CHEM CATALYSIS, 2022, 2 (05): : 1084 - 1099
  • [2] Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase
    Bylehn, Fabian
    Menendez, Cintia A.
    Perez-Lemus, Gustavo R.
    Alvarado, Walter
    de Pablo, Juan J.
    ACS CENTRAL SCIENCE, 2021, 7 (01) : 164 - 174
  • [3] Structural Basis of the Potential Binding Mechanism of Remdesivir to SARS-CoV-2 RNA-Dependent RNA Polymerase
    Zhang, Leili
    Zhou, Ruhong
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (32): : 6955 - 6962
  • [4] Comparative molecular docking and simulation analysis of molnupiravir and remdesivir with SARS-CoV-2 RNA dependent RNA polymerase (RdRp)
    Patil, Shashank M.
    Maruthi, K. R.
    Bajpe, Shrisha Naik
    Vyshali, V. M.
    Sushmitha, S.
    Akhila, Chagalamari
    Ramu, Ramith
    BIOINFORMATION, 2021, 17 (11) : 932 - 939
  • [5] Electron Density Analysis of SARS-CoV-2 RNA-Dependent RNA Polymerase Complexes
    Palko, Nadezhda
    Grishina, Maria
    Potemkin, Vladimir
    MOLECULES, 2021, 26 (13):
  • [6] Biostructural Models for the Binding of Nucleoside Analogs to SARS-CoV-2 RNA-Dependent RNA Polymerase
    Prussia, Andrew J.
    Chennamadhavuni, Spandan
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (03) : 1402 - 1411
  • [7] Mechanistic insight on the remdesivir binding to RNA-Dependent RNA polymerase (RdRp) of SARS-cov-2
    Arba, Muhammad
    Wahyudi, Setyanto Tri
    Brunt, Dylan J.
    Paradis, Nicholas
    Wu, Chun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 129 (129)
  • [8] Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach
    Aftab, Syed Ovais
    Ghouri, Muhammad Zubair
    Masood, Muhammad Umer
    Haider, Zeshan
    Khan, Zulqurnain
    Ahmad, Aftab
    Munawar, Nayla
    JOURNAL OF TRANSLATIONAL MEDICINE, 2020, 18 (01)
  • [9] Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach
    Syed Ovais Aftab
    Muhammad Zubair Ghouri
    Muhammad Umer Masood
    Zeshan Haider
    Zulqurnain Khan
    Aftab Ahmad
    Nayla Munawar
    Journal of Translational Medicine, 18
  • [10] Computational Analysis Reveals Monomethylated Triazolopyrimidine as a Novel Inhibitor of SARS-CoV-2 RNA-Dependent RNA Polymerase (RdRp)
    Karthic, Anandakrishnan
    Kesarwani, Veerbhan
    Singh, Rahul Kunwar
    Yadav, Pavan Kumar
    Chaturvedi, Navaneet
    Chauhan, Pallavi
    Yadav, Brijesh Singh
    Kushwaha, Sandeep Kumar
    MOLECULES, 2022, 27 (03):