MORITA EQUIVALENCE OF C*-CORRESPONDENCES PASSES TO THE RELATED OPERATOR ALGEBRAS

被引:6
|
作者
Eleftherakis, George K. [1 ]
Kakariadis, Evgenios T. A. [2 ]
Katsoulis, Elias G. [3 ]
机构
[1] Univ Patras, Dept Math, Fac Sci, Patras 26504, Greece
[2] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] East Carolina Univ, Dept Math, Greenville, NC 27858 USA
关键词
STABLE ISOMORPHISM; TENSOR-ALGEBRAS; IDEAL STRUCTURE; CUNTZ-PIMSNER; REPRESENTATIONS; THEOREM;
D O I
10.1007/s11856-017-1609-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We revisit a central result of Muhly and Solel on operator algebras of C*-correspondences. We prove that (possibly non-injective) strongly Morita equivalent C*-correspondences have strongly Morita equivalent relative Cuntz-Pimsner C*-algebras. The same holds for strong Morita equivalence (in the sense of Blecher, Muhly and Paulsen) and strong Delta-equivalence (in the sense of Eleftherakis) for the related tensor algebras. In particular, we obtain stable isomorphism of the operator algebras when the equivalence is given by a sigma-TRO. As an application we show that strong Morita equivalence coincides with strong Delta-equivalence for tensor algebras of aperiodic C*-correspondences.
引用
收藏
页码:949 / 972
页数:24
相关论文
共 50 条