RNN-T BASED OPEN-VOCABULARY KEYWORD SPOTTING IN MANDARIN WITH MULTI-LEVEL DETECTION

被引:6
|
作者
Liu, Zuozhen [1 ,2 ]
Li, Ta [1 ,2 ]
Zhang, Pengyuan [1 ,2 ]
机构
[1] Inst Acoust, Key Lab Speech Acoust & Content Understanding, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
keyword spotting; RNN-T; constrained attention; multi-level detection;
D O I
10.1109/ICASSP39728.2021.9413588
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Despite the recent prevalence of keyword spotting (KWS) in smart-home, open-vocabulary KWS remains a keen but unmet need among the users. In this paper, we propose an RNN Transducer (RNN-T) based keyword spotting system with a constrained attention mechanism biasing module that biases the RNN-T model towards a specific keyword of interest. The atonal syllables are adopted as the modeling units, which addresses the out-of-vocabulary (OOV) problem. A multi-level detection is applied to the posterior probabilities for the judgement. Evaluating on the AISHELL-2 dataset shows our proposed method outperforms the RNN-T-based approach by 2.70% in false reject rate (FRR) at 1 false alarm (FA) per hour. We further provide insights into the role of each stage of the detection cascade, where most negative samples are filtered out by the first stage with high computational efficiency.
引用
收藏
页码:5649 / 5653
页数:5
相关论文
共 50 条
  • [1] Neural keyword confidence estimation for open-vocabulary keyword spotting
    Liu, Zuozhen
    Li, Ta
    Zhang, Pengyuan
    [J]. ELECTRONICS LETTERS, 2022, 58 (03) : 133 - 135
  • [2] Predicting detection filters for small footprint open-vocabulary keyword spotting
    Bluche, Theodore
    Gisselbrecht, Thibault
    [J]. INTERSPEECH 2020, 2020, : 2552 - 2556
  • [3] Open-Vocabulary Keyword Spotting With Audio And Text Embeddings
    Sacchi, Niccolo
    Nanchen, Alexandre
    Jaggi, Martin
    Cernak, Milos
    [J]. INTERSPEECH 2019, 2019, : 3362 - 3366
  • [4] Keyword-dependent monaural speech enhancement for open-vocabulary keyword spotting
    Liu, Zuozhen
    Wu, Chou
    Li, Ta
    Zhao, Qingwei
    [J]. Shengxue Xuebao/Acta Acustica, 2023, 48 (02): : 415 - 424
  • [5] Learning Audio-Text Agreement for Open-vocabulary Keyword Spotting
    Shin, Hyeon-Kyeong
    Han, Hyewon
    Kim, Doyeon
    Chung, Soo-Whan
    Kang, Hong-Goo
    [J]. INTERSPEECH 2022, 2022, : 1871 - 1875
  • [6] DyConvMixer: Dynamic Convolution Mixer Architecture for Open-Vocabulary Keyword Spotting
    Gharbieh, Waseem
    Huang, Jinmiao
    Wan, Qianhui
    Shim, Han Suk
    Lee, Chul
    [J]. INTERSPEECH 2022, 2022, : 5205 - 5209
  • [7] Keyword Spotting Based On CTC and RNN For Mandarin Chinese Speech
    Wang, Yiyan
    Long, Yanhua
    [J]. 2018 11TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2018, : 374 - 378
  • [8] QbyE-MLPMixer: Query-by-Example Open-Vocabulary Keyword Spotting using MLPMixer
    Huang, Jinmiao
    Gharbieh, Waseem
    Wan, Qianhui
    Shim, Han Suk
    Lee, Hyun Chul
    [J]. INTERSPEECH 2022, 2022, : 5200 - 5204
  • [9] End-to-End Transformer-Based Open-Vocabulary Keyword Spotting with Location-Guided Local Attention
    Wei, Bo
    Yang, Meirong
    Zhang, Tao
    Tang, Xiao
    Huang, Xing
    Kim, Kyuhong
    Lee, Jaeyun
    Cho, Kiho
    Park, Sung-Un
    [J]. INTERSPEECH 2021, 2021, : 361 - 365
  • [10] Open-Vocabulary Keyword Detection from Super-Large Scale Speech Database
    Kanda, Naoyuki
    Sagawa, Hirohiko
    Sumiyoshi, Takashi
    Obuchi, Yasunari
    [J]. 2008 IEEE 10TH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, VOLS 1 AND 2, 2008, : 943 - 948