Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration

被引:74
|
作者
Singh, Anima [1 ]
Nadkarni, Girish [2 ]
Gottesman, Omri [2 ]
Ellis, Stephen B. [2 ]
Bottinger, Erwin P. [2 ]
Guttag, John V. [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA
关键词
Electronic health records; Temporal analysis; Progression of kidney function loss; Risk stratification; CHRONIC KIDNEY-DISEASE; CKD; ESRD;
D O I
10.1016/j.jbi.2014.11.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Predictive models built using temporal data in electronic health records (EHRs) can potentially play a major role in improving management of chronic diseases. However, these data present a multitude of technical challenges, including irregular sampling of data and varying length of available patient history. In this paper, we describe and evaluate three different approaches that use machine learning to build predictive models using temporal EHR data of a patient. The first approach is a commonly used non-temporal approach that aggregates values of the predictors in the patient's medical history. The other two approaches exploit the temporal dynamics of the data. The two temporal approaches vary in how they model temporal information and handle missing data. Using data from the EHR of Mount Sinai Medical Center, we learned and evaluated the models in the context of predicting loss of estimated glomerular filtration rate (eGFR), the most common assessment of kidney function. Our results show that incorporating temporal information in patient's medical history can lead to better prediction of loss of kidney function. They also demonstrate that exactly how this information is incorporated is important. In particular, our results demonstrate that the relative importance of different predictors varies over time, and that using multi-task learning to account for this is an appropriate way to robustly capture the temporal dynamics in EHR data. Using a case study, we also demonstrate how the multi-task learning based model can yield predictive models with better performance for identifying patients at high risk of short-term loss of kidney function. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 228
页数:9
相关论文
共 50 条
  • [1] A Practical Comparison Between the Predictive Power of Population-based Risk Stratification Models Using Data From Electronic Health Records Versus Administrative Claims: Setting a Baseline for Future EHR-derived Risk Stratification Models
    Kharrazi, Hadi
    Weiner, Jonathan P.
    [J]. MEDICAL CARE, 2018, 56 (02) : 202 - 203
  • [2] Incorporating informatively collected laboratory data from EHR in clinical prediction models
    Sun, Minghui
    Engelhard, Matthew M.
    Bedoya, Armando D.
    Goldstein, Benjamin A.
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [3] EARLY PREDICTIVE RISK FACTORS OF RENAL DETERIORATION IN TRANSPLANT RECIPIENT
    Sancho Calabuig, Asuncion
    Palladro Mateu, Luis M.
    Gavela Martinez, Eva
    Avila Bernabeu, Ana I.
    Beltran Catalan, Sandra
    Crespo Albiach, Josep F.
    [J]. TRANSPLANT INTERNATIONAL, 2009, 22 : 309 - 309
  • [4] Improvement of predictive models of risk of disease progression in chronic hepatitis C by incorporating longitudinal data
    Konerman, Monica A.
    Zhang, Yiwei
    Zhu, Ji
    Higgins, Peter D. R.
    Lok, Anna S. F.
    Waljee, Akbar K.
    [J]. HEPATOLOGY, 2015, 61 (06) : 1832 - 1841
  • [5] Comparing predictive performance of pulmonary embolism risk stratification tools for acute clinical deterioration
    Weekes, Anthony J. J.
    Raper, Jaron D. D.
    Esener, Dasia
    Davison, Jillian
    Boyd, Jeremy S. S.
    Kelly, Christopher
    Nomura, Jason T. T.
    Thomas, Alyssa M. M.
    Lupez, Kathryn
    Cox, Carly A. A.
    Ockerse, Patrick M. M.
    Leech, Stephen
    Johnson, Jakea
    Abrams, Eric
    Murphy, Kathleen
    O'Connell, Nathaniel S. S.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF EMERGENCY PHYSICIANS OPEN, 2023, 4 (03)
  • [6] Development of Risk Stratification Predictive Models for Cervical Deformity Surgery
    Passias, Peter
    Ahmad, Waleed
    Oh, Cheongeun
    Renaud, Lafage
    Lafage, Virginie
    Hamilton, D. Kojo
    Protopsaltis, Themistocles
    Klineberg, Eric
    Gum, Jeffrey L.
    Line, Breton G.
    Hart, Robert A.
    Bess, Shay
    Schwab, Frank
    Shaffrey, Christopher I.
    Smith, Justin S.
    Ames, Christopher P.
    [J]. NEUROSURGERY, 2020, 67 : 243 - 244
  • [7] Development of Risk Stratification Predictive Models for Cervical Deformity Surgery
    Passias, Peter G.
    Ahmad, Waleed
    Oh, Cheongeun
    Imbo, Bailey
    Naessig, Sara
    Pierce, Katherine
    Lafage, Virginie
    Lafage, Renaud
    Hamilton, D. Kojo
    Protopsaltis, Themistocles S.
    Klineberg, Eric O.
    Gum, Jeffrey
    Schoenfeld, Andrew J.
    Line, Breton
    Hart, Robert A.
    Burton, Douglas C.
    Bess, Shay
    Schwab, Frank J.
    Smith, Justin S.
    Shaffrey, Christopher, I
    Ames, Christopher P.
    [J]. NEUROSURGERY, 2022, 91 (06) : 928 - 935
  • [8] Assessment of renal function in risk stratification in hypertensive patients
    Villevalde, S.
    Gudgalis, N.
    Isikova, K.
    Kobalava, Z.
    [J]. EUROPEAN HEART JOURNAL, 2009, 30 : 1035 - 1035
  • [9] Spatial econometric models for panel data - Incorporating spatial and temporal data
    Frazier, C
    Kockelman, KM
    [J]. TRANSPORTATION AND LAND DEVELOPMENT 2005, 2005, (1902): : 80 - 90
  • [10] Urinary D-serine level as a predictive biomarker for deterioration of renal function in patients with atherosclerotic risk factors
    Iwakawa, Hidehiro
    Makabe, Shin
    Ito, Tomokazu
    Yoshimura, Tohru
    Watanabe, Hiroyuki
    [J]. BIOMARKERS, 2019, 24 (02) : 159 - 165