Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells

被引:72
|
作者
Abouzari-Lotf, Ebrahim [1 ,2 ]
Zakeri, Masoumeh [1 ,3 ]
Nasef, Mohamed Mahmoud [4 ]
Miyake, Mikio [3 ]
Mozarmnia, Pooria [1 ]
Bazilah, Nur Anati [1 ,3 ]
Emelin, Noor Fatina [1 ,3 ]
Ahmad, Arshad [1 ,2 ]
机构
[1] Univ Teknol Malaysia, Inst Future Energy, Ctr Hydrogen Energy, Adv Mat Res Grp, Kuala Lumpur 54100, Malaysia
[2] Univ Teknol Malaysia, Dept Chem Engn, Johor Baharu 81310, Malaysia
[3] Univ Teknol Malaysia, Malaysia Japan Int Inst Technol, Kuala Lumpur 54100, Malaysia
[4] Univ Teknol Petronas, Dept Chem Engn, Seri Iskandar 32610, Perak, Malaysia
关键词
Phosphonated graphene oxide; Pyridine functionalized PBI; High-temperature PEM; Durability; PROTON CONDUCTIVITY; PEM; PERFORMANCE; ENHANCEMENT; NANOCLUSTERS; DEGRADATION; OPERATION;
D O I
10.1016/j.jpowsour.2018.11.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer electrolyte membranes with highly stable phosphoric acid loading continue to pose a challenge for the development of durable high temperature polymer electrolyte membrane fuel cells. A new class of highly conductive and durable composite membranes is prepared for high temperature fuel cell application under anhydrous conditions. 2,6-Pyridine functionalized polybenzimidazole (Py-PBI) is used as substrate for hosting phosphoric acid moiety. A highly dispersible phosphonated graphene oxide (PGO) introduced to Py-PBI substrate at different levels prior to acid doping and conductivity, durability and fuel cell performance of developed membranes are evaluated. A proton conductivity as high as 76.4 x 10(-3)S cm(-1) is achieved at 140 degrees C under anhydrous condition. A strong correlation is found between the content of PGO and the stability of the acid content despite similarity in doping level. In general, the conductivity is obviously more stable in the PGO containing membranes. A Pt-catalyzed fuel cell using the developed composite membranes show a peak power density > 359 mW cm(-2) at 120 degrees C under anhydrous condition which is above 75% improvements compared to the membranes without the phosphonated filler. This work demonstrates that the adopted membrane preparation strategy and their observed properties pave the way for highly conductive and durable proton conducting membranes.
引用
收藏
页码:238 / 245
页数:8
相关论文
共 50 条
  • [1] A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells
    Xu, Chenxi
    Cao, Yuancheng
    Kumar, Ravi
    Wu, Xu
    Wang, Xu
    Scott, Keith
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (30) : 11359 - 11364
  • [2] Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications
    Yang, Jingshuai
    Liu, Chao
    Gao, Liping
    Wang, Jin
    Xu, Yixin
    He, Ronghuan
    [J]. RSC ADVANCES, 2015, 5 (122) : 101049 - 101054
  • [3] Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells
    Fei, Mingming
    Lin, Ruizhi
    Deng, Yuming
    Xian, Hongxi
    Bian, Renji
    Zhang, Xiaole
    Cheng, Jigui
    Xu, Chenxi
    Cai, Dongyu
    [J]. NANOTECHNOLOGY, 2018, 29 (03)
  • [4] Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells
    Aili, David
    Allward, Todd
    Alfaro, Silvia Martinez
    Hartmann-Thompson, Claire
    Steenberg, Thomas
    Hjuler, Hans Aage
    Li, Qingfeng
    Jensen, Jens Oluf
    Stark, Edmund J.
    [J]. ELECTROCHIMICA ACTA, 2014, 140 : 182 - 190
  • [5] Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells
    Aili, David
    Allward, Todd
    Alfaro, Silvia Martinez
    Hartmann-Thompson, Claire
    Steenberg, Thomas
    Hjuler, Hans Aage
    Li, Qingfeng
    Jensen, Jens Oluf
    Stark, Edmund J.
    [J]. Electrochimica Acta, 2014, 140 : 182 - 190
  • [7] Polybenzimidazole and ionic liquid composite membranes for high temperature polymer electrolyte fuel cells
    Niu, Bingbing
    Luo, Shijing
    Lu, Chunling
    Yi, Wendi
    Liang, Jiantao
    Guo, Shuang
    Wang, Deng
    Zeng, Feng
    Duan, Shichun
    Liu, Yang
    Zhang, Lihua
    Xu, Baomin
    [J]. SOLID STATE IONICS, 2021, 361
  • [8] A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells
    Xu, Chenxi
    Liu, Xiaoteng
    Cheng, Jigui
    Scott, Keith
    [J]. JOURNAL OF POWER SOURCES, 2015, 274 : 922 - 927
  • [9] Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells
    Uregen, Nurhan
    Pehlivanoglu, Kubra
    Ozdemir, Yagmur
    Devrim, Yilser
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (04) : 2636 - 2647
  • [10] Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells
    Xue, Chao
    Zou, Jing
    Sun, Zhaonan
    Wang, Fanghui
    Han, Kefei
    Zhu, Hong
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (15) : 7931 - 7939