C-KPCA: Custom Kernel PCA for Cancer Classification

被引:5
|
作者
Van-Sang Ha [1 ]
Ha-Nam Nguyen [2 ]
机构
[1] Acad Finance, Dept Econ Informat Syst, Hanoi, Vietnam
[2] VNU Univ Engn & Technol, Dept Informat Technol, Hanoi, Vietnam
关键词
Feature extract; KPCA; SVD; Cancer classification; Dimension reduction; GENE-EXPRESSION DATA; MULTIPLE SVM-RFE; COMPONENT ANALYSIS; MICROARRAY DATA; SELECTION; ALGORITHM;
D O I
10.1007/978-3-319-41920-6_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis (PCA) is an effective and well-known method for reducing high-dimensional data sets. Recently, KPCA (Kernel PCA), a nonlinear form of PCA, has been introduced into many fields. In this paper, we propose a new gene selection, namely Custom Kernel principal component analysis (C-KPCA). The new kernel function for KPCA is created by combining a set of kernel functions. First, Singular Value Decomposition (SVD) is used to reduce the dimension of microarray data. Input space is then mapped to a higher-dimensional feature space using the proposed custom kernel function. The main objective of our method is to extract nonlinear features for classification process. In order to test the accuracy of our method, a number of experiments are carried out on four binary gene datasets: Colon Tumor, Leukemia, Lymphoma, and Prostate. The experimental results show that our proposed method results in a higher prediction rate as comparing with several recently published algorithms.
引用
收藏
页码:459 / 467
页数:9
相关论文
共 50 条
  • [1] MQ-KPCA: Custom Kernel PCA for Classification of Microscopic Images
    Suresha, M.
    Raghukumar, D.S.
    Kuppa, S.
    Raghavendra, R.S.
    [J]. Journal of The Institution of Engineers (India): Series B, 2022, 103 (06): : 2025 - 2033
  • [2] MQ-KPCA: Custom Kernel PCA for Classification of Microscopic Images
    Suresha M.
    Raghukumar D.S.
    Kuppa S.
    Raghavendra R.S.
    [J]. Journal of The Institution of Engineers (India): Series B, 2022, 103 (6) : 2025 - 2033
  • [3] PCA AND KPCA OF ECG SIGNALS WITH BINARY SVM CLASSIFICATION
    Kanaan, L.
    Merheb, D.
    Kallas, M.
    Francis, C.
    Amoud, H.
    Honeine, P.
    [J]. 2011 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2011, : 344 - 348
  • [4] Image classification with parallel KPCA-PCA network
    Yang, Feng
    Ma, Zheng
    Xie, Mei
    [J]. COMPUTATIONAL INTELLIGENCE, 2022, 38 (02) : 397 - 415
  • [5] Ensemble Classifiers Based on Kernel PCA for Cancer Data Classification
    Zhou, Jin
    Pan, Yuqi
    Chen, Yuehui
    Liu, Yang
    [J]. EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2009, 5755 : 955 - +
  • [6] Classification of soil and vegetation by kernel Fisher and kernel PCA
    Chapron M.
    Bain G.
    [J]. Pattern Recognition and Image Analysis, 2011, 21 (3) : 462 - 466
  • [7] Classification of soil and vegetation by kernel fisher and kernel PCA
    Chapron M.
    [J]. Pattern Recognition and Image Analysis, 2013, 23 (1) : 51 - 56
  • [8] Comparative analysis of PCA and KPCA on paddy growth stages classification
    Halim, Hendra
    Isa, Sani M.
    Mulyono, Sidik
    [J]. 2016 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2016, : 167 - 172
  • [9] KPCA vs. PCA Study for an Age Classification of Speakers
    Munoz-Mulas, Cristina
    Martinez-Olalla, Rafael
    Gomez-Vilda, Pedro
    Lang, Elmar W.
    Alvarez-Marquina, Agustin
    Miguel Mazaira-Fernandez, Luis
    Nieto-Lluis, Victor
    [J]. ADVANCES IN NONLINEAR SPEECH PROCESSING, 2011, 7015 : 190 - +
  • [10] Feature reduction with PCA/KPCA for gait classification with different assistive devices
    Martins, Maria
    Santos, Cristina
    Costa, Lino
    Frizera, Anselmo
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2015, 8 (04) : 363 - 382