An augmented Lagrangian trust region method for equality constrained optimization

被引:21
|
作者
Wang, Xiao [1 ]
Yuan, Yaxiang [2 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Beijing, Peoples R China
来源
OPTIMIZATION METHODS & SOFTWARE | 2015年 / 30卷 / 03期
关键词
equality constraints; augmented Lagrangian function; trust region; Lagrange multiplier; penalty parameter; convergence; LINEAR-DEPENDENCE CONDITION; ALGORITHMS;
D O I
10.1080/10556788.2014.940947
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we propose an augmented Lagrangian trust region method for equality constrained optimization. Different from standard augmented Lagrangian methods which minimize the augmented Lagrangian function for fixed Lagrange multiplier and penalty parameter at each iteration, the proposed method tries to minimize its second-order approximation function. We propose a new strategy for adjusting the penalty parameter. With adaptive update of Lagrange multipliers, we prove the global convergence of the proposed method. Numerical results on test problems from the CUTEr collection are also reported.
引用
收藏
页码:559 / 582
页数:24
相关论文
共 50 条