Identification of membrane protein types via multivariate information fusion with Hilbert-Schmidt Independence Criterion

被引:103
|
作者
Wang, Hao [1 ]
Ding, Yijie [2 ]
Tang, Jijun [1 ,3 ,4 ]
Guo, Fei [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Sch Comp Sci & Technol, Tianjin 300350, Peoples R China
[2] Suzhou Univ Sci & Technol, Sch Elect & Informat Engn, Suzhou, Peoples R China
[3] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
[4] Tianjin Univ, Key Lab Syst Bioengn, Minist Educ, Tianjin, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Membrane protein; Position specific scoring matrix; Multiple kernel learning; Multivariate information fusion; Feature extraction; SUPPORT VECTOR MACHINES; AMINO-ACID-COMPOSITION; PHYSICOCHEMICAL PROPERTIES; SCORING MATRIX; GENERAL-FORM; WEB SERVER; PREDICTION; ENSEMBLE; EVOLUTIONARY; ATTRIBUTES;
D O I
10.1016/j.neucom.2019.11.103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Membrane proteins perform a variety of functions vital to the survival of organisms, such as oxidoreductase, transferase or hydrolase. If the type of membrane protein can be detected, the function of protein can be quickly determined. Many existing computational methods not only use the autocorrelation function on the hydrophobicity index of amino acids, but also consider the evolutionary conservatism information of the primary protein sequences. In this study, we employ Average Blocks (AN/Block), Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), Histogram of Oriented Gradient (HOG) and Pseudo-PSSM (PsePSSM) to extract evolution characteristics from Position-Specific Score Matrix (PSSM). Then, we construct five kernels from above five corresponding feature sets. Finally, we propose a novel Multiple Kernel Support Vector Machine (MKSVM) classifier based on Hilbert Schmidt Independence Criterion (HSIC) to integrate five kernels for identifying membrane proteins. For the performance evaluation, our method is tested on four benchmark datasets of membrane proteins. The comparative results demonstrate that our prediction model achieves the best performance among all existing outstanding approaches. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:257 / 269
页数:13
相关论文
共 48 条
  • [1] Multivariate Information Fusion for Identifying Antifungal Peptides with Hilbert-Schmidt Independence Criterion
    Zhou, Haohao
    Wang, Hao
    Ding, Yijie
    Tang, Jijun
    [J]. CURRENT BIOINFORMATICS, 2022, 17 (01) : 89 - 100
  • [2] Sequence Alignment with the Hilbert-Schmidt Independence Criterion
    Campbell, Jordan
    Lewis, J. P.
    Seol, Yeongho
    [J]. PROCEEDINGS CVMP 2018: THE 15TH ACM SIGGRAPH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION, 2018,
  • [3] Robust Learning with the Hilbert-Schmidt Independence Criterion
    Greenfeld, Daniel
    Shalit, Uri
    [J]. 25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [4] Test of conditional independence in factor models via Hilbert-Schmidt independence criterion
    Xu, Kai
    Cheng, Qing
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 199
  • [5] Sensitivity maps of the Hilbert-Schmidt independence criterion
    Perez-Suay, Adrian
    Camps-Valls, Gustau
    [J]. APPLIED SOFT COMPUTING, 2018, 70 : 1054 - 1063
  • [6] Nystrom M -Hilbert-Schmidt Independence Criterion
    Kalinke, Florian
    Szabo, Zoltan
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1005 - 1015
  • [7] Sparse Hilbert-Schmidt Independence Criterion Regression
    Poignard, Benjamin
    Yamada, Makoto
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 538 - 547
  • [8] Kernel Learning with Hilbert-Schmidt Independence Criterion
    Wang, Tinghua
    Li, Wei
    He, Xianwen
    [J]. PATTERN RECOGNITION (CCPR 2016), PT I, 2016, 662 : 720 - 730
  • [9] Robust Learning with the Hilbert-Schmidt Independence Criterion
    Greenfeld, Daniel
    Shalit, Uri
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [10] Extending Hilbert-Schmidt Independence Criterion for Testing Conditional Independence
    Zhang, Bingyuan
    Suzuki, Joe
    [J]. ENTROPY, 2023, 25 (03)