A machine learning approach to the detection of ghosting and scattered light artifacts in dark energy survey images

被引:4
|
作者
Chang, C. [1 ,2 ]
Drlica-Wagner, A. [1 ,2 ,3 ]
Kent, S. M.
Nord, B. [2 ,3 ]
Wang, D. M. [4 ]
Wang, M. H. L. S. [3 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[3] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[4] Illinois Math & Sci Acad, Aurora, IL 60506 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Machine learning; Image artifacts;
D O I
10.1016/j.ascom.2021.100474
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Astronomical images are often plagued by unwanted artifacts that arise from a number of sources including imperfect optics, faulty image sensors, cosmic ray hits, and even airplanes and artificial satellites. Spurious reflections (known as "ghosts") and the scattering of light off the surfaces of a camera and/or telescope are particularly difficult to avoid. Detecting ghosts and scattered light efficiently in large cosmological surveys that will acquire petabytes of data can be a daunting task. In this paper, we use data from the Dark Energy Survey to develop, train, and validate a machine learning model to detect ghosts and scattered light using convolutional neural networks. The model architecture and training procedure are discussed in detail, and the performance on the training and validation set is presented. Testing is performed on data and results are compared with those from a ray-tracing algorithm. As a proof of principle, we have shown that our method is promising for the Rubin Observatory and beyond. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] DeepGhostBusters: Using Mask R-CNN to detect and mask ghosting and scattered-light artifacts from optical survey images
    Tanoglidis, D.
    Ciprijanovic, A.
    Drlica-Wagner, A.
    Nord, B.
    Wang, M. H. L. S.
    Amsellem, A. Jacob
    Downey, K.
    Jenkins, S.
    Kafkes, D.
    Zhang, Z.
    ASTRONOMY AND COMPUTING, 2022, 39
  • [3] Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy
    Kyathanahally, Sreenath P.
    Doering, Andre
    Kreis, Roland
    MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (03) : 851 - 863
  • [4] A Machine Learning Approach for Material Detection in Hyperspectral Images
    Maree, Raphael
    Stevens, Benjamin
    Geurts, Pierre
    Guern, Yves
    Mack, Philippe
    2009 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPR WORKSHOPS 2009), VOLS 1 AND 2, 2009, : 372 - +
  • [5] Management of Machine Learning Lifecycle Artifacts: A Survey
    Schlegel, Marius
    Sattler, Kai-Uwe
    SIGMOD RECORD, 2022, 51 (04) : 18 - 35
  • [6] Removal of Artifacts in Borehole Images Using Machine Learning
    Guner, Baris
    Fouda, Ahmed E.
    Barrett, Peter
    PETROPHYSICS, 2023, 64 (02): : 239 - 251
  • [7] Machine Learning for Searching the Dark Energy Survey for Trans-Neptunian Objects
    Henghes, B.
    Lahav, O.
    Gerdes, D. W.
    Lin, H. W.
    Morgan, R.
    Abbott, T. M. C.
    Aguena, M.
    Allam, S.
    Annis, J.
    Avila, S.
    Bertin, E.
    Brooks, D.
    Burke, D. L.
    Rosell, A. Carnero
    Kind, M. Carrasco
    Carretero, J.
    Conselice, C.
    Costanzi, M.
    da Costa, L. N.
    De Vicente, J.
    Desai, S.
    Diehl, H. T.
    Doel, P.
    Everett, S.
    Ferrero, I
    Frieman, J.
    Garcia-Bellido, J.
    Gaztanaga, E.
    Gruen, D.
    Gruendl, R. A.
    Gschwend, J.
    Gutierrez, G.
    Hartley, W. G.
    Hinton, S. R.
    Honscheid, K.
    Hoyle, B.
    James, D. J.
    Kuehn, K.
    Kuropatkin, N.
    Marshall, J. L.
    Melchior, P.
    Menanteau, F.
    Miquel, R.
    Ogando, R. L. C.
    Palmese, A.
    Paz-Chinchon, F.
    Plazas, A. A.
    Romer, A. K.
    Sanchez, C.
    Sanchez, E.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2021, 133 (1019) : 1 - 14
  • [8] Machine learning approach for phishing website detection : A literature survey
    Patil, Rutuja R.
    Kaur, Gagandeep
    Jain, Himank
    Tiwari, Ayush
    Joshi, Soham
    Rao, Keshav
    Sharma, Amit
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (03): : 817 - 827
  • [9] Automatic detection of Martian dark slope streaks by machine learning using HiRISE images
    Wang, Yexin
    Di, Kaichang
    Xin, Xin
    Wan, Wenhui
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 129 : 12 - 20
  • [10] Machine Learning Approach for Ship Detection using Remotely Sensed Images
    Mutalikdesai, Akshay
    Baskaran, Gokul
    Jadhav, Bhagyashree
    Biyani, Madhur
    Prasad, Jayashree Rajesh
    2017 2ND INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2017, : 1064 - 1068