A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis

被引:3
|
作者
Wen, Long [1 ]
Wang, You [1 ]
Li, Xinyu [2 ]
机构
[1] China Univ Geosci, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
deep reinforcement learning; hyper parameter optimization; convolutional neural network; fault diagnosis; HYPERPARAMETER OPTIMIZATION; TIME;
D O I
10.1007/s11465-022-0673-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Convolutional neural network (CNN) has achieved remarkable applications in fault diagnosis. However, the tuning aiming at obtaining the well-trained CNN model is mainly manual search. Tuning requires considerable experiences on the knowledge on CNN training and fault diagnosis, and is always time consuming and labor intensive, making the automatic hyper parameter optimization (HPO) of CNN models essential. To solve this problem, this paper proposes a novel automatic CNN (ACNN) for fault diagnosis, which can automatically tune its three key hyper parameters, namely, learning rate, batch size, and L2-regulation. First, a new deep reinforcement learning (DRL) is developed, and it constructs an agent aiming at controlling these three hyper parameters along with the training of CNN models online. Second, a new structure of DRL is designed by combining deep deterministic policy gradient and long short-term memory, which takes the training loss of CNN models as its input and can output the adjustment on these three hyper parameters. Third, a new training method for ACNN is designed to enhance its stability. Two famous bearing datasets are selected to evaluate the performance of ACNN. It is compared with four commonly used HPO methods, namely, random search, Bayesian optimization, tree Parzen estimator, and sequential model-based algorithm configuration. ACNN is also compared with other published machine learning (ML) and deep learning (DL) methods. The results show that ACNN outperforms these HPO and ML/DL methods, validating its potential in fault diagnosis.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis
    Long Wen
    You Wang
    Xinyu Li
    Frontiers of Mechanical Engineering, 2022, 17
  • [2] A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis
    WEN Long
    WANG You
    LI Xinyu
    Frontiers of Mechanical Engineering, 2022, 17 (02)
  • [3] A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis
    Wu, Zhenghong
    Jiang, Hongkai
    Liu, Shaowei
    Wang, Ruixin
    ISA TRANSACTIONS, 2022, 129 : 505 - 524
  • [4] A New Reinforcement Learning Based Learning Rate Scheduler for Convolutional Neural Network in Fault Classification
    Wen, Long
    Li, Xinyu
    Gao, Liang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (12) : 12890 - 12900
  • [5] Deep Convolutional Neural Network Using Transfer Learning for Fault Diagnosis
    Zhang, Dong
    Zhou, Taotao
    IEEE ACCESS, 2021, 9 : 43889 - 43897
  • [6] Intelligent machine fault diagnosis based on deep transfer convolutional neural network and extreme learning machine
    Cen, Jian
    Chen, Zhihao
    Wu, Yinbo
    Yang, Zhuohong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2023, 237 (09) : 2201 - 2212
  • [7] Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning
    Xu, Gaowei
    Liu, Min
    Jiang, Zhuofu
    Soeffker, Dirk
    Shen, Weiming
    SENSORS, 2019, 19 (05)
  • [8] A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
    Ma, Shangjun
    Cai, Wei
    Liu, Wenkai
    Shang, Zhaowei
    Liu, Geng
    SENSORS, 2019, 19 (10)
  • [9] Power Grid Fault Diagnosis Based on Deep Pyramid Convolutional Neural Network
    Zhang, Xu
    Zhang, Huiting
    Zhang, Dongying
    Wang, Yixian
    Ding, Ruiting
    Zheng, Yuchuan
    Zhang, Yongxu
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2023, 9 (06): : 2188 - 2203
  • [10] Deep convolutional neural network model based chemical process fault diagnosis
    Wu, Hao
    Zhao, Jinsong
    COMPUTERS & CHEMICAL ENGINEERING, 2018, 115 : 185 - 197