Band Structures of Periodic Porphyrin Nanostructures

被引:26
|
作者
Posligua, Victor [1 ]
Aziz, Alex [1 ]
Haver, Renee [2 ]
Peeks, Martin D. [2 ]
Anderson, Harry L. [2 ]
Grau-Crespo, Ricardo [1 ]
机构
[1] Univ Reading, Dept Chem, Reading RG6 6AD, Berks, England
[2] Univ Oxford, Dept Chem, Chem Res Lab, Oxford OX1 3TA, England
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2018年 / 122卷 / 41期
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; MOLECULAR WIRES; CHARGE-TRANSPORT; CONDUCTANCE; ANTENNA; DESIGN; ARRAYS; SHEET; TAPES; GAPS;
D O I
10.1021/acs.jpcc.8b08131
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent progress in the synthesis of pi-conjugated porphyrin arrays of different shapes and dimensionalities motivates us to examine the band structures of infinite (periodic) porphyrin nanostructures. We use screened hybrid density functional theory simulations and Wannier function interpolation to obtain accurate band structures of linear chains, 2D nanosheets, and nanotubes made of zinc porphyrins. Porphyrin units are connected by butadiyne (C4) or ethyne (C2) linkers or "fused" (C0), i.e., with no linker. The electronic properties exhibit strong variations with the number of linking carbon atoms (C0/C2/C4). For example, all C0 nanostructures exhibit gapless or metallic band structures, whereas band gaps open for the C2 or C4 structures. The reciprocal space point at which the gaps are observed also show fluctuations with the length of the linkers. We discuss the evolution of the electronic structure of finite porphyrin tubes made of a few stacked six-porphyrin rings toward the behavior of the infinite nanotube. Our results suggest approaches for engineering porphyrin-based nanostructures to achieve target electronic properties.
引用
收藏
页码:23790 / 23798
页数:9
相关论文
共 50 条
  • [1] Band spectra of periodic hybrid δ-δ′ structures
    Gadella, M.
    Mateos Guilarte, J. M.
    Munoz-Castaneda, J. M.
    Nieto, L. M.
    Santamaria-Sanz, L.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (10):
  • [2] Porphyrin nanostructures
    Foekema, J
    Rowan, AE
    Nolte, RJM
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U1104 - U1104
  • [3] Band pattern of commensurate modulated periodic structures
    De Sabata, Aldo
    Matekovits, Ladislau
    Lipan, Ovidiu
    [J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2017, 11 (09) : 1303 - 1307
  • [4] Porphyrin nanostructures and biomorphs
    Shelnutt, John A.
    Martin, Kathleen
    Wang, Zhongchun
    Garcia, Robert M.
    Jacobsen, John
    Busani, Tito
    Medforth, Craig J.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [5] PHOTONIC BAND STRUCTURES OF OPTICALLY ANISOTROPIC PERIODIC ARRAYS
    ZABEL, IHH
    STROUD, D
    [J]. PHYSICAL REVIEW B, 1993, 48 (08): : 5004 - 5012
  • [6] Periodic nanostructures
    Apel, O
    Beinhorn, F
    Ihlemann, J
    Klein-Wiele, JH
    Marowsky, G
    Simon, P
    [J]. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2000, 214 (09): : 1233 - 1250
  • [7] Experimental investigation of acoustic band structures in tetragonal periodic particulate composite structures
    Henderson, BK
    Maslov, KI
    Kinra, VK
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2001, 49 (10) : 2369 - 2383
  • [8] DOUBLE DIRAC CONES IN BAND STRUCTURES OF PERIODIC SCHROEDINGER OPERATORS
    Cao, Ying
    Zhu, Yi
    [J]. MULTISCALE MODELING & SIMULATION, 2023, 21 (03): : 1147 - 1169
  • [9] Band gap enhancement in periodic frames using hierarchical structures
    Dal Poggetto, Vinicius F.
    Bosia, Federico
    Miniaci, Marco
    Pugno, Nicola M.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2021, 216 : 68 - 82
  • [10] Acoustic band gap measurements in waveguides with periodic resonant structures
    Ash, J
    Robertson, WM
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (9-10): : 824 - 828