On the classical solution to the linear-constrained minimum energy problem

被引:0
|
作者
Boissaux, Marc [1 ]
Schiltz, Jang [1 ]
机构
[1] Univ Luxembourg, Luxembourg Sch Finance, L-1246 Luxembourg, Luxembourg
关键词
optimal control; minimum energy problem; quadratic cost function; control constraints;
D O I
10.1080/00207179.2011.641129
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Minimum energy problems involving linear systems with quadratic performance criteria are classical in optimal control theory. The case where controls are constrained is discussed in Athans and Falb (1966) [Athans, M. and Falb, P.L. (1966), Optimal Control: An Introduction to the Theory and Its Applications, New York: McGraw-Hill Book Co.] who obtain a componentwise optimal control expression involving a saturation function expression. We show why the given expression is not generally optimal in the case where the dimension of the control is greater than one and provide a numerical counterexample.
引用
收藏
页码:143 / 146
页数:4
相关论文
共 50 条
  • [1] A Fully Linear-Constrained Optimal Electricity-Gas Flow in an Integrated Energy System
    Luo, Songlin
    Yang, Lun
    Zhang, Xin
    Chen, Weihong
    Wang, Kang
    Xu, Yinliang
    [J]. 2018 2ND IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2018, : 434 - 439
  • [2] Generalized linear-constrained optimal power flow for distribution networks
    Li, Biao
    Wan, Can
    Li, Yunyi
    Jiang, Yibao
    Yu, Peng
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2023, 17 (06) : 1298 - 1309
  • [3] The inverse source problem of electromagnetics: Linear operator formalism and minimum energy solution
    Marengo, EA
    Devaney, AJ
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - ANTENNAS: GATEWAYS TO THE GLOBAL NETWORK, VOLS 1-4, 1998, : 690 - 693
  • [4] The inverse source problem of electromagnetics: Linear inversion formulation and minimum energy solution
    Marengo, EA
    Devaney, AJ
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (02) : 410 - 412
  • [5] A numerical solution of the constrained energy problem
    Helsen, S
    Van Barel, M
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) : 442 - 452
  • [6] A CONSTRAINED MINIMUM ENERGY PROBLEM IN RELATIVISTIC MAGNETOFLUID DYNAMICS
    MERCHES, I
    [J]. REVUE ROUMAINE DE PHYSIQUE, 1980, 25 (03): : 317 - 323
  • [7] Convergence Analysis of L-ADMM for Multi-block Linear-Constrained Separable Convex Minimization Problem
    Feng J.-K.
    Zhang H.-B.
    Cheng C.-Z.
    Pei H.-M.
    [J]. Journal of the Operations Research Society of China, 2015, 3 (4) : 563 - 579
  • [8] An alternating direction method for linear-constrained matrix nuclear norm minimization
    Xiao, Yun-Hai
    Jin, Zheng-Fen
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (03) : 541 - 554
  • [9] Constrained Leja points and the numerical solution of the constrained energy problem
    Coroian, DI
    Dragnev, P
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) : 427 - 444
  • [10] A CONSTRAINED MINIMUM PROBLEM
    JAGERS, AA
    [J]. SIAM REVIEW, 1994, 36 (02) : 281 - 283