Ulrich Bundles on Intersections of Two 4-Dimensional Quadrics

被引:6
|
作者
Cho, Yonghwa [1 ]
Kim, Yeongrak [2 ]
Lee, Kyoung-Seog [3 ]
机构
[1] Korea Inst Adv Study, 85 Hoegiro Dongdaemun Gu, Seoul 02455, South Korea
[2] Saarland Univ, Dept Math, Campus E2 4, D-66123 Saarbrucken, Germany
[3] Inst Basic Sci IBS, Ctr Geometry & Phys, Pohang 37673, South Korea
关键词
COHEN-MACAULAY MODULES; VECTOR-BUNDLES; DUALITY;
D O I
10.1093/imrn/rnz320
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the moduli space of Ulrich bundles on a smooth complete intersection of two 4-dimensional quadrics in P-5. The main ingredient is the semiorthogonal decomposition by Bondal-Orlov, combined with the categorical methods pioneered by Kuznetsov and Lahoz-Macri-Stellari. Using these methods, we prove that any smooth intersection of two 4-dimensional quadrics in P-5 carries an Ulrich bundle of rank r for every r >= 2. Moreover, we provide a description of the moduli space of stable Ulrich bundles.
引用
收藏
页码:17277 / 17303
页数:27
相关论文
共 50 条
  • [1] A 4-DIMENSIONAL BUNDLE OF QUADRICS, AND A MONAD
    TIHOMIROV, AS
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 16 (01): : 207 - 220
  • [2] A two-dimensional rationality problem and intersections of two quadrics
    Hoshi, Akinari
    Kang, Ming-Chang
    Kitayama, Hidetaka
    Yamasaki, Aiichi
    [J]. MANUSCRIPTA MATHEMATICA, 2022, 168 (3-4) : 423 - 437
  • [3] A two-dimensional rationality problem and intersections of two quadrics
    Akinari Hoshi
    Ming-Chang Kang
    Hidetaka Kitayama
    Aiichi Yamasaki
    [J]. manuscripta mathematica, 2022, 168 : 423 - 437
  • [4] Rationality of even-dimensional intersections of two real quadrics
    Hassett, Brendan
    Kollar, Janos
    Tschinkel, Yuri
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2022, 97 (01) : 183 - 207
  • [5] Topological classification of 4-dimensional complete intersections
    Fang, FQ
    Klaus, S
    [J]. MANUSCRIPTA MATHEMATICA, 1996, 90 (02) : 139 - 147
  • [6] On intersections of two real quadrics
    Krasnov, V. A.
    [J]. IZVESTIYA MATHEMATICS, 2018, 82 (01) : 91 - 139
  • [7] Geometric decompositions of 4-dimensional orbifold bundles
    Hillman, Jonathan A.
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2011, 63 (03) : 871 - 886
  • [8] Equivariant geometry of odd-dimensional complete intersections of two quadrics
    Hassett, Brendan
    Tschinkel, Yuri
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (04) : 1555 - 1597
  • [9] A remark on moduli spaces of 4-dimensional complete intersections
    Brückmann, P
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 525 : 213 - 217
  • [10] Return to the arithmetic of the intersections of two quadrics
    Colliot-Thelene, Jean-Louis
    Kuznetsov, Alexander
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (806): : 147 - 185