Surface conversion of single-crystal Bi2Se3 to β-In2Se3

被引:0
|
作者
McMahon, William E. [1 ]
Melamed, Celeste L. [1 ,2 ]
Zhang, Hanyu [1 ]
Blackburn, Jeffrey L. [1 ]
Dippo, Pat [1 ]
Tamboli, Adele C. [1 ,2 ]
Toberer, Eric S. [2 ]
Norman, Andrew G. [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Colorado Sch Mines, Golden, CO 80401 USA
关键词
Organometallic vapor phase epitaxy; Inorganic compounds; Crystal structure; Interfaces; Topotaxy; DER-WAALS EPITAXY; GROWTH; LAYERS;
D O I
10.1016/j.jcrysgro.2021.126306
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
In this work, we demonstrate that the surface layers of single-crystal layered-2D Bi2Se3 can be converted to layered-2D rhombohedral beta-In2Se3 by annealing under a trimethylindium (TMIn) flux. Samples were prepared in a metalorganic chemical vapor deposition (MOCVD) chamber, then transferred under vacuum to a surface analysis chamber for analysis with low-energy electron diffraction (LEED) and Auger electron spectroscopy. Additional ex situ characterization included x-ray diffraction, transmission-electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) elemental mapping, and Raman spectroscopy. The resulting single-crystal beta-In2Se3 adopts the rhombohedral crystal structure (space group R-3m) and orientation of the underlying Bi2Se3, and the excess Bi atoms generated by this process create an underlying region of Bi-rich BixSey. Due to the difference in bandgap between Bi2Se3 and In2Se3, this conversion reaction presents a pathway to lateral heterojunctions if only selected regions are converted by masking the surface to spatially define the TMIn exposure. The conversion may also have implications for heteroepitaxy, because the in-plane lattice constants of Bi2Se3 and In2Se3 (0001) surfaces match those of InP and GaAs (111), respectively, and the natural cleavage planes of a layered-2D crystal facilitate substrate removal and reuse.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] MOBILITY IN SINGLE-CRYSTAL BI2SE3
    WOOLLAM, JA
    SPAIN, IL
    BEALE, H
    PHYSICS LETTERS A, 1972, A 41 (04) : 319 - &
  • [2] Optimization of In2Se3/Si(111) Heteroepitaxy To Enable Bi2Se3/In2Se3 Bilayer Growth
    Rathi, Somilkumar J.
    Smith, David J.
    Drucker, Jeff
    CRYSTAL GROWTH & DESIGN, 2014, 14 (09) : 4617 - 4623
  • [3] Superlattices of Bi2Se3/In2Se3: Growth characteristics and structural properties
    Wang, Z. Y.
    Guo, X.
    Li, H. D.
    Wong, T. L.
    Wang, N.
    Xie, M. H.
    APPLIED PHYSICS LETTERS, 2011, 99 (02)
  • [4] Nanomechanical characterisation of single-crystal Bi2Se3 topological insulator
    Uzun, Utku
    Yetmez, Mehmet
    Akinci, Nurgul
    MICRO & NANO LETTERS, 2021, 16 (03) : 203 - 212
  • [5] Growth of GaAs on single-crystal layered-2D Bi2Se3
    McMahon, W. E.
    Melamed, C. L.
    Tamboli, A. E.
    Toberer, E. S.
    Norman, A. G.
    JOURNAL OF CRYSTAL GROWTH, 2020, 534
  • [6] Indium and bismuth interdiffusion and its influence on the mobility in In2Se3/Bi2Se3
    Lee, Hang Dong
    Xu, Can
    Shubeita, Samir M.
    Brahlek, Matthew
    Koirala, Nikesh
    Oh, Seongshik
    Gustafsson, Torgny
    THIN SOLID FILMS, 2014, 556 : 322 - 324
  • [7] Termination of single-crystal Bi2Se3 surfaces prepared by various methods
    Zhou, Weimin
    Zhu, Haoshan
    Yarmoff, Jory A.
    PHYSICAL REVIEW B, 2016, 94 (19)
  • [8] Nanoindentation Creep Behavior of Single-Crystal Bi2Se3 Topological Insulator
    Uzun, Utku
    Lamuta, Caterina
    Yetmez, Mehmet
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (04):
  • [9] Coexisting Bi and Se surface terminations of cleaved Bi2Se3 single crystals
    Hewitt, Andrew S.
    Wang, Jingying
    Boltersdorf, Jon
    Maggard, Paul A.
    Dougherty, Daniel B.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2014, 32 (04):
  • [10] Spin-Sensitive Epitaxial In2Se3 Tunnel Barrier in In2Se3/Bi2Se3 Topological van der Waals Heterostructure
    Li, Connie H.
    Moon, Jisoo
    van ‘t Erve, Olaf M.J.
    Wickramaratne, Darshana
    Cobas, Enrique D.
    Johannes, Michelle D.
    Jonker, Berend T.
    ACS Applied Materials and Interfaces, 2022, 14 (29): : 34093 - 34100