STATIONARY COVARIANCE MATRICES FOR HYPERSPECTRAL POINT TARGET DETECTION

被引:0
|
作者
Furth, Yoram [1 ]
Falik, Adi [1 ]
Rotman, Stanley R. [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, Beer Sheva, Israel
关键词
Hyperspectral; Sub-Pixel Target Detection; Segmentation; Stationarity;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Segmentation appears to be an attractive preprocessing procedure when performing point target detection in hyperspectral data. Unfortunately, the computation cost is not always worth the improvement. Recent work proposed guidelines to decide if segmentation is worthwhile, but the results were only known after segmentation was performed. In this paper, we study the statistical basis of the covariance matrix used in hyperspectral subpixel target detection and propose a metric applied directly to the original matrix. Based on the degree of non-stationarity of the original matrix, one can predict how worthwhile it is to compute segmentation before analyzing on the image.
引用
收藏
页码:4245 / 4248
页数:4
相关论文
共 50 条
  • [1] IMPROVED COVARIANCE MATRICES FOR POINT TARGET DETECTION IN HYPERSPECTRAL DATA
    Sofer, Y.
    Geva, E.
    Rotman, S. R.
    [J]. IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, COMMUNICATIONS, ANTENNAS AND ELECTRONICS SYSTEMS (COMCAS 2009), 2009,
  • [2] Improved covariance matrices for point target detection in hyperspectral data
    Caefer, Charlene E.
    Silverman, Jerry
    Orthal, Oded
    Antonelli, Dani
    Sharoni, Yaron
    Rotman, Stanley R.
    [J]. OPTICAL ENGINEERING, 2008, 47 (07)
  • [3] Improved Covariance Matrix for Target Detection in Hyperspectral Imaging
    Schvartzman, Ilan
    Maman, Shimrit
    Blumberg, Dan G.
    Rotman, Stanley R.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING (ICSEE), 2016,
  • [4] ESTIMATION OF HYPERSPECTRAL COVARIANCE MATRICES
    Ben-David, Avishai
    Davidson, Charles E.
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 4324 - 4327
  • [5] LOCAL COVARIANCE MATRICES FOR IMPROVED TARGET DETECTION PERFORMANCE
    Caefer, C. E.
    Rotman, S. R.
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 239 - +
  • [6] Background covariance discriminative dictionary learning for hyperspectral target detection
    Li, Zhiyuan
    Mu, Tingkui
    Wang, Bin
    Yang, Qiujie
    Dai, Haishan
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 128
  • [7] Algorithms for point target detection in hyperspectral imagery
    Caefer, CE
    Rotman, SR
    Silverman, J
    Yip, PW
    [J]. IMAGING SPECTROMETRY VIII, 2002, 4816 : 242 - 257
  • [8] Riemannian Median, Geometry of Covariance Matrices and Radar Target Detection
    Yang, Le
    Arnaudon, Marc
    Barbaresco, Frederic
    [J]. 7TH EUROPEAN RADAR CONFERENCE, 2010, : 415 - 418
  • [9] Local covariance equalization of hyperspectral imagery: Advantages and limitations for target detection
    Schaum, A.
    [J]. 2005 IEEE Aerospace Conference, Vols 1-4, 2005, : 2001 - 2011
  • [10] OPTIONS FOR SOLID POINT TARGET DETECTION IN HYPERSPECTRAL DATA
    Yurkovetsky, Eliad
    Rotman, Stanley R.
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2270 - 2273