A Convex Optimization Framework for Bi-Clustering

被引:0
|
作者
Lim, Shiau Hong [1 ]
Chen, Yudong [2 ]
Xu, Huan [1 ]
机构
[1] Natl Univ Singapore, 9 Engn Dr 1, Singapore 117575, Singapore
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
CLASS DISCOVERY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a framework for biclustering and clustering where the observations are general labels. Our approach is based on the maximum likelihood estimator and its convex relaxation, and generalizes recent works in graph clustering to the biclustering setting. In addition to standard biclustering setting where one seeks to discover clustering structure simultaneously in two domain sets, we show that the same algorithm can be as effective when clustering structure only occurs in one domain This allows for an alternative approach to clustering that is more natural in some scenarios. We present theoretical results that provide sufficient conditions for the recovery of the true underlying clusters under a generalized stochastic block model. These are further validated by our empirical results on both synthetic and real data.
引用
收藏
页码:1679 / 1688
页数:10
相关论文
共 50 条
  • [1] A bi-clustering framework for categorical data
    Pensa, RG
    Robardet, C
    Boulicaut, JF
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2005, 2005, 3721 : 643 - 650
  • [2] SPLITTING METHODS FOR CONVEX BI-CLUSTERING AND CO-CLUSTERING
    Weylandt, Michael
    2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 237 - 242
  • [3] Bi-clustering of microarray data using a symmetry-based multi-objective optimization framework
    Sudipta Acharya
    Sriparna Saha
    Pracheta Sahoo
    Soft Computing, 2019, 23 : 5693 - 5714
  • [4] On approximate balanced bi-clustering
    Ma, GX
    Peng, JM
    Wei, Y
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2005, 3595 : 661 - 670
  • [5] Bi-clustering of microarray data using a symmetry-based multi-objective optimization framework
    Acharya, Sudipta
    Saha, Sriparna
    Sahoo, Pracheta
    SOFT COMPUTING, 2019, 23 (14) : 5693 - 5714
  • [6] Prediction on recommender system based on bi-clustering and moth flame optimization
    Wu, Huan-huan
    Ke, Gang
    Wang, Yang
    Chang, Yu-Teng
    APPLIED SOFT COMPUTING, 2022, 120
  • [7] Consensus Algorithm for Bi-clustering Analysis
    Foszner, Pawel
    Labaj, Wojciech
    Polanski, Andrzej
    Staniszewski, Michal
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 557 - 570
  • [8] Bi-clustering based recommendation system
    Mali, Mahesh
    Mishra, Dhirendra
    Vijayalaxmi, M.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (04): : 1029 - 1039
  • [9] Approximation algorithms for bi-clustering problems
    Wang, Lusheng
    Lin, Yu
    Liu, Xiaowen
    ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2006, 4175 : 310 - 320
  • [10] Network inference with ensembles of bi-clustering trees
    Pliakos, Konstantinos
    Vens, Celine
    BMC BIOINFORMATICS, 2019, 20 (01)