Analytical approximations to the Lambert W function

被引:10
|
作者
Wu, Baisheng [1 ]
Zhou, Yixin [1 ]
Lim, C. W. [2 ]
Zhong, Huixiang [1 ]
机构
[1] Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Peoples R China
[2] City Univ Hong Kong, Dept Architecture & Civil Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lambert W function; Pad? approximation; Root; Schr?der?s iteration; Transcendental equation;
D O I
10.1016/j.apm.2021.11.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Lambert W function is defined as the multivalued inverse of the function w -> we(w). It has a wide range of applications. We propose a new method to construct a high-precision analytical approximation of the two branches of W . The method is based on Pade approx-imation and Schroder's iteration. This method can also be extended to solve other tran-scendental equations in science and engineering. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:114 / 121
页数:8
相关论文
共 50 条
  • [1] Analytical approximations for real values of the Lambert W-function
    Barry, DA
    Parlange, JY
    Li, L
    Prommer, H
    Cunningham, CJ
    Stagnitti, E
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2000, 53 (1-2) : 95 - 103
  • [2] Analytical approximations for real values of the Lambert W-function (vol 53, pg 95, 2000)
    Barry, DA
    Parlange, JY
    Li, L
    Prommer, H
    Cunningham, CJ
    Stagnitti, F
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 59 (06) : 543 - 543
  • [3] PSEM Approximations for Both Branches of Lambert W Function with Applications
    Vazquez-Leal, H.
    Sandoval-Hernandez, M. A.
    Garcia-Gervacio, J. L.
    Herrera-May, A. L.
    Filobello-Nino, U. A.
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2019, 2019
  • [4] Analytical Modeling of Magnetically Saturated Inductance by Lambert W Function
    Gurleyen, Hilmi
    Mese, Erkan
    [J]. JOURNAL OF MAGNETICS, 2017, 22 (03) : 369 - 377
  • [5] Some analytical results in physics using the Lambert W function
    Houari, Ahmed
    [J]. Mathematical Scientist, 2015, 40 (01): : 29 - 34
  • [6] On the Lambert W function
    Corless, RM
    Gonnet, GH
    Hare, DEG
    Jeffrey, DJ
    Knuth, DE
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) : 329 - 359
  • [7] New approximations to the principal real-valued branch of the Lambert W-function
    Roberto Iacono
    John P. Boyd
    [J]. Advances in Computational Mathematics, 2017, 43 : 1403 - 1436
  • [8] Global approximations to the principal real-valued branch of the Lambert W-function
    Boyd, JP
    [J]. APPLIED MATHEMATICS LETTERS, 1998, 11 (06) : 27 - 31
  • [9] New approximations to the principal real-valued branch of the Lambert W-function
    Iacono, Roberto
    Boyd, John P.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (06) : 1403 - 1436
  • [10] Applications of Lambert W Function
    Rathie, P. N.
    Silva, P. H. D.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2011, 23 (D11): : 1 - 15