Methane sources in arctic thermokarst lake sediments on the North Slope of Alaska

被引:26
|
作者
Carnevali, P. B. Matheus [1 ,2 ]
Rohrssen, M. [3 ]
Williams, M. R. [3 ]
Michaud, A. B. [4 ]
Adams, H. [4 ]
Berisford, D. [5 ]
Love, G. D. [3 ]
Priscu, J. C. [4 ]
Rassuchine, O. [1 ,2 ]
Hand, K. P. [5 ]
Murray, A. E. [1 ]
机构
[1] Univ Nevada, Desert Res Inst, Div Earth & Ecosyst Sci, Reno, NV 89506 USA
[2] Univ Nevada, Dept Biochem & Mol Biol, Reno, NV 89557 USA
[3] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA
[4] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA
[5] CALTECH, Jet Prop Lab, Pasadena, CA USA
基金
美国国家航空航天局;
关键词
ORGANIC-CARBON; ISOTOPE FRACTIONATION; COMMUNITY COMPOSITION; SEASONAL-VARIATION; MARINE-SEDIMENTS; WATER INTERFACE; PERMAFROST THAW; OXYGEN-UPTAKE; TEMPERATURE; OXIDATION;
D O I
10.1111/gbi.12124
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The permafrost on the North Slope of Alaska is densely populated by shallow lakes that result from thermokarst erosion. These lakes release methane (CH4) derived from a combination of ancient thermogenic pools and contemporary biogenic production. Despite the potential importance of CH4 as a greenhouse gas, the contribution of biogenic CH4 production in arctic thermokarst lakes in Alaska is not currently well understood. To further advance our knowledge of CH4 dynamics in these lakes, we focused our study on (i) the potential for microbial CH4 production in lake sediments, (ii) the role of sediment geochemistry in controlling biogenic CH4 production, and (iii) the temperature dependence of this process. Sediment cores were collected from one site in Siqlukaq Lake and two sites in Sukok Lake in late October to early November. Analyses of pore water geochemistry, sedimentary organic matter and lipid biomarkers, stable carbon isotopes, results from CH4 production experiments, and copy number of a methanogenic pathway-specific gene (mcrA) indicated the existence of different sources of CH4 in each of the lakes chosen for the study. Analysis of this integrated data set revealed that there is biological CH4 production in Siqlukaq at moderate levels, while the very low levels of CH4 detected in Sukok had a mixed origin, with little to no biological CH4 production. Furthermore, methanogenic archaea exhibited temperature-dependent use of in situ substrates for methanogenesis, and the amount of CH4 produced was directly related to the amount of labile organic matter in the sediments. This study constitutes an important first step in better understanding the actual contribution of biogenic CH4 from thermokarst lakes on the coastal plain of Alaska to the current CH4 budgets.
引用
收藏
页码:181 / 197
页数:17
相关论文
共 50 条
  • [1] Sources of methane to an Arctic lake in Alaska: An isotopic investigation
    Lecher, Alanna L.
    Chuang, Pei-Chuan
    Singleton, Michael
    Paytan, Adina
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2017, 122 (04) : 753 - 766
  • [2] Microbial methane cycling in sediments of Arctic thermokarst lagoons
    Yang, Sizhong
    Anthony, Sara E.
    Jenrich, Maren
    in 't Zandt, Michiel H.
    Strauss, Jens
    Overduin, Pier Paul
    Grosse, Guido
    Angelopoulos, Michael
    Biskaborn, Boris K.
    Grigoriev, Mikhail N.
    Wagner, Dirk
    Knoblauch, Christian
    Jaeschke, Andrea
    Rethemeyer, Janet
    Kallmeyer, Jens
    Liebner, Susanne
    [J]. GLOBAL CHANGE BIOLOGY, 2023, 29 (10) : 2714 - 2731
  • [3] Methane turnover and environmental change from Holocene lipid biomarker records in a thermokarst lake in Arctic Alaska
    Elvert, Marcus
    Pohlman, John W.
    Becker, Kevin W.
    Gaglioti, Benjamin
    Hinrichs, Kai-Uwe
    Wooller, Matthew J.
    [J]. HOLOCENE, 2016, 26 (11): : 1766 - 1777
  • [4] Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska
    Liu, L.
    Schaefer, K.
    Gusmeroli, A.
    Grosse, G.
    Jones, B. M.
    Zhang, T.
    Parsekian, A. D.
    Zebker, H. A.
    [J]. CRYOSPHERE, 2014, 8 (03): : 815 - 826
  • [5] Distinct Microbial Assemblage Structure and Archaeal Diversity in Sediments of Arctic Thermokarst Lakes Differing in Methane Sources
    Carnevali, Paula B. Matheus
    Herbold, Craig W.
    Hand, Kevin P.
    Priscu, John C.
    Murray, Alison E.
    [J]. FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [6] THE PLECOPTERA AND TRICHOPTERA OF THE ARCTIC NORTH SLOPE OF ALASKA
    Kendrick, Michael R.
    Huryn, Alexander D.
    [J]. WESTERN NORTH AMERICAN NATURALIST, 2014, 74 (03) : 275 - 285
  • [7] Increases in temperature and nutrient availability positively affect methane-cycling microorganisms in Arctic thermokarst lake sediments
    de Jong, Anniek E. E.
    in 't Zandt, Michiel H.
    Meisel, Ove H.
    Jetten, Mike S. M.
    Dean, Joshua F.
    Rasigraf, Olivia
    Welte, Cornelia U.
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2018, 20 (12) : 4314 - 4327
  • [8] Organic Carbon and Nitrogen Stocks Along a Thermokarst Lake Sequence in Arctic Alaska
    Fuchs, Matthias
    Lenz, Josefine
    Jock, Suzanne
    Nitze, Ingmar
    Jones, Benjamin M.
    Strauss, Jens
    Gunther, Frank
    Grosse, Guido
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2019, 124 (05) : 1230 - 1247
  • [9] Rapid Saline Permafrost Thaw Below a Shallow Thermokarst Lake in Arctic Alaska
    Jones, Benjamin M.
    Kanevskiy, Mikhail Z.
    Parsekian, Andrew D.
    Bergstedt, Helena
    Ward Jones, Melissa K.
    Rangel, Rodrigo C.
    Hinkel, Kenneth M.
    Shur, Yuri
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (22)
  • [10] Arctic Engineering: Structural Evaluation on the North Slope of Alaska
    Triandafilou, Nicholas
    Brindley, Tom
    Mahamid, Mustafa
    [J]. STRUCTURES CONGRESS 2018: BRIDGES, TRANSPORTATION STRUCTURES, AND NONBUILDING STRUCTURES, 2018, : 476 - 488