Room-temperature electrochemical water-gas shift reaction for high purity hydrogen production

被引:64
|
作者
Cui, Xiaoju [1 ,2 ]
Su, Hai-Yan [3 ]
Chen, Ruixue [1 ,2 ]
Yu, Liang [1 ]
Dong, Jinchao [2 ]
Ma, Chao [4 ]
Wang, Suheng [1 ,2 ]
Li, Jianfeng [2 ]
Yang, Fan [1 ]
Xiao, Jianping [1 ]
Zhang, Mengtao [5 ]
Ma, Ding [5 ]
Deng, Dehui [1 ,2 ]
Zhang, Dong H. [3 ]
Tian, Zhongqun [2 ]
Bao, Xinhe [1 ]
机构
[1] Chinese Acad Sci, Collaborat Innovat Ctr Chem Energy Mat, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Mat, Xiamen 361005, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China
[4] Hunan Univ, Coll Mat Sci & Engn, Ctr High Resolut Electron Microscopy, Changsha 410082, Hunan, Peoples R China
[5] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
CATALYSTS; GOLD; CO; OXIDATION; AU; CU;
D O I
10.1038/s41467-018-07937-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Traditional water-gas shift reaction provides one primary route for industrial production of clean-energy hydrogen. However, this process operates at high temperatures and pressures, and requires additional separation of H-2 from products containing CO2, CH4 and residual CO. Herein, we report a room-temperature electrochemical water-gas shift process for direct production of high purity hydrogen (over 99.99%) with a faradaic efficiency of approximately 100%. Through rational design of anode structure to facilitate CO diffusion and PtCu catalyst to optimize CO adsorption, the anodic onset potential is lowered to almost 0 volts versus the reversible hydrogen electrode at room temperature and atmospheric pressure. The optimized PtCu catalyst achieves a current density of 70.0 mA cm(-2) at 0.6 volts which is over 12 times that of commercial Pt/C (40 wt.%) catalyst, and remains stable for even more than 475 h. This study opens a new and promising route of producing high purity hydrogen.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Room-temperature electrochemical water–gas shift reaction for high purity hydrogen production
    Xiaoju Cui
    Hai-Yan Su
    Ruixue Chen
    Liang Yu
    Jinchao Dong
    Chao Ma
    Suheng Wang
    Jianfeng Li
    Fan Yang
    Jianping Xiao
    Mengtao Zhang
    Ding Ma
    Dehui Deng
    Dong H. Zhang
    Zhongqun Tian
    Xinhe Bao
    [J]. Nature Communications, 10
  • [2] Alloying Pd with Cu boosts hydrogen production via room-temperature electrochemical water-gas shift reaction
    Wei, Huifang
    Liu, Huan
    Yu, Liang
    Zhang, Mo
    Zhang, Yunlong
    Fan, Jinchang
    Cui, Xiaoju
    Deng, Dehui
    [J]. NANO ENERGY, 2022, 102
  • [3] Hydrogen production on iron–magnesium oxide in the high-temperature water-gas shift reaction
    Amel Boudjemaa
    Aline Auroux
    Souhila Boumaza
    Mohamed Trari
    Ouiza Cherifi
    Rabah Bouarab
    [J]. Reaction Kinetics and Catalysis Letters, 2009, 98 : 319 - 325
  • [4] Hydrogen production on iron-magnesium oxide in the high-temperature water-gas shift reaction
    Boudjemaa, Amel
    Auroux, Aline
    Boumaza, Souhila
    Trari, Mohamed
    Cherifi, Ouiza
    Bouarab, Rabah
    [J]. REACTION KINETICS AND CATALYSIS LETTERS, 2009, 98 (02): : 319 - 325
  • [5] Intermediate temperature water-gas shift kinetics for hydrogen production
    Houston, Ross
    Labbe, Nicole
    Hayes, Douglas
    Daw, C. Stuart
    Abdoulmoumine, Nourredine
    [J]. REACTION CHEMISTRY & ENGINEERING, 2019, 4 (10): : 1814 - 1822
  • [6] Enhancing the low temperature water-gas shift reaction through a hybrid sorption-enhanced membrane reactor for high-purity hydrogen production
    Soria, M. A.
    Tosti, S.
    Mendes, A.
    Madeira, Luis M.
    [J]. FUEL, 2015, 159 : 854 - 863
  • [7] Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production
    Demirel, E.
    Ayas, N.
    [J]. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2017, 51 (01) : 76 - 87
  • [8] LaCexCuZnO perovskites for high temperature water-gas shift reaction
    S. S. Maluf
    E. M. Assaf
    [J]. Journal of Natural Gas Chemistry . , 2009, (02) - 138
  • [9] Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production
    E. Demirel
    N. Ayas
    [J]. Theoretical Foundations of Chemical Engineering, 2017, 51 : 76 - 87
  • [10] Hydrogen production by the photoreforming of methanol and the photocatalytic water-gas shift reaction
    Kennedy, Julia
    Hayward, James
    Davies, Philip R.
    Bowker, Michael
    [J]. JOURNAL OF PHYSICS-ENERGY, 2021, 3 (02):