Intrusion detection based on Machine Learning techniques in computer networks

被引:57
|
作者
Dina, Ayesha S. [1 ]
Manivannan, D. [1 ]
机构
[1] Univ Kentucky, Dept Comp Sci, Lexington, KY 40508 USA
关键词
Network security; Computer security; Cybersecurity; Intrusion detection; Intrusion prevention; Machine learning; DETECTION SYSTEMS; IOT; UNIVERSAL; ALGORITHM; THINGS; MODEL;
D O I
10.1016/j.iot.2021.100462
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intrusions in computer networks have increased significantly in the last decade, due in part to a profitable underground cyber-crime economy and the availability of sophisticated tools for launching such intrusions. Researchers in industry and academia have been proposing methods and building systems for detecting and preventing such security breaches for more than four decades. Solutions proposed for dealing with network intrusions can be broadly classified as signature-based and anomaly-based. Signature-based intrusion detection systems look for patterns that match known attacks. On the other hand, anomaly-based intrusion detection systems develop a model for distinguishing legitimate users' behavior from that of malicious users' and hence are capable of detecting unknown attacks. One of the approaches used to classify legitimate and anomalous behavior is to use Machine Learning (ML) techniques. Several intrusion detection systems based on ML techniques have been proposed in the literature. In this paper, we present a comprehensive critical survey of ML-based intrusion detection approaches presented in the literature in the last ten years. This survey would serve as a supplement to other general surveys on intrusion detection as well as a reference to recent work done in the area for researchers working in ML-based intrusion detection systems. We also discuss some open issues that need to be addressed.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Intrusion Detection in Computer Networks Using Combination of Machine Learning Techniques
    Mazraeh, Saeed
    Modhej, Adel
    Neysi, Sajedeh Hasan Nejad
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2016, 16 (08): : 122 - 126
  • [2] Intrusion Detection in Computer Networks Using Hybrid Machine Learning Techniques
    Perez, Deyban
    Astor, Miguel A.
    Abreu, David Perez
    Scalise, Eugenio
    2017 XLIII LATIN AMERICAN COMPUTER CONFERENCE (CLEI), 2017,
  • [3] Intrusion Detection in Computer Networks based on Machine Learning Algorithms
    Osareh, Alireza
    Shadgar, Bita
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (11): : 15 - 23
  • [4] Enhance Intrusion Detection in Computer Networks Based on Deep Extreme Learning Machine
    Khan, Muhammad Adnan
    Rehman, Abdur
    Khan, Khalid Masood
    Al Ghamdi, Mohammed A.
    Almotiri, Sultan H.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01): : 467 - 480
  • [5] Intrusion Detection in Computer Networks via Machine Learning Algorithms
    Ertam, Fatih
    Kilincer, Ilhan Firat
    Yaman, Orhan
    2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP), 2017,
  • [6] Analysis of Machine Learning Techniques Based Intrusion Detection Systems
    Sharma, Rupam Kr.
    Kalita, Hemanta Kumar
    Borah, Parashjyoti
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND INFORMATICS, ICACNI 2015, VOL 2, 2016, 44 : 485 - 493
  • [7] Intrusion detection based on behavior mining and machine learning techniques
    Mukkamala, Srinivas
    Xu, Dennis
    Sung, Andrew H.
    ADVANCES IN APPLIED ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4031 : 619 - 628
  • [8] A Machine learning based intrusion detection approach for industrial networks
    Qiao, Hanli
    Blech, Jan Olaf
    Chen, Huazhou
    2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2020, : 265 - 270
  • [9] Towards Machine Learning Based Intrusion Detection in IoT Networks
    Islam, Nahida
    Farhin, Fahiba
    Sultana, Ishrat
    Kaiser, M. Shamim
    Rahman, Md. Sazzadur
    Mahmud, Mufti
    Hosen, A. S. M. Sanwar
    Cho, Gi Hwan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 1801 - 1821
  • [10] Review of Machine Learning-Based Intrusion Detection Techniques for MANETs
    Hamza, Fouziah
    Vigila, S. Maria Celestin
    COMPUTING AND NETWORK SUSTAINABILITY, 2019, 75