Decoherence, fluctuations and Wigner function in neutron optics

被引:1
|
作者
Facchi, P [1 ]
Mariano, A
Pascazio, S
Suda, M
机构
[1] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[2] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[3] ARC Seibersdorf Res Ltd, A-2444 Seibersdorf, Austria
关键词
decoherence; irreversibility; fluctuations; Wigner function;
D O I
10.1088/1464-4266/5/3/360
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyse the coherence properties of neutron wavepackets, after they have interacted with a phase shifter undergoing different kinds of statistical fluctuation. We give a quantitative (and operational) definition of decoherence and compare it to the standard deviation of the distribution of the phase shifts. We find that in some cases the neutron ensemble is more coherent, even though it has interacted with a wider (i.e. more disordered) distribution of shifts. This feature is independent of the particular definition of decoherence: this is shown by proposing and discussing an alternative definition, based on the Wigner function, that displays a similar behaviour. We briefly discuss the notion of entropy of the shifts and find that, in general, it does not correspond to that of decoherence of the neutron.
引用
收藏
页码:S290 / S298
页数:9
相关论文
共 50 条
  • [1] Wigner function and decoherence
    Kiefer, C
    [J]. 5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 521 - 523
  • [2] Coherence and Decoherence in Neutron Optics
    Baron, Matthias
    Rauch, Helmut
    [J]. ADVANCES IN QUANTUM THEORY, 2011, 1327 : 89 - 99
  • [3] Decoherence effects in the Wigner function formalism
    Philipp Schwaha
    Damien Querlioz
    Philippe Dollfus
    Jérôme Saint-Martin
    Mihail Nedjalkov
    Siegfried Selberherr
    [J]. Journal of Computational Electronics, 2013, 12 : 388 - 396
  • [4] WIGNER FUNCTION AND DECOHERENCE IN QUANTUM COSMOLOGY
    HABIB, S
    LAFLAMME, R
    [J]. PHYSICAL REVIEW D, 1990, 42 (12): : 4056 - 4065
  • [5] Decoherence effects in the Wigner function formalism
    Schwaha, Philipp
    Querlioz, Damien
    Dollfus, Philippe
    Saint-Martin, Jerome
    Nedjalkov, Mihail
    Selberherr, Siegfried
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2013, 12 (03) : 388 - 396
  • [6] Wigner distribution function in nonlinear optics
    Dragoman, D
    [J]. APPLIED OPTICS, 1996, 35 (21) : 4142 - 4146
  • [7] Wigner distribution function in nonlinear optics
    [J]. Appl Opt, 21 (4142):
  • [8] Wigner function in neutron interferometry
    Suda, M.
    [J]. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B Semiclassical Optics, 1995, 7 (05):
  • [9] The Wigner distribution function in optics and optoelectronics
    Dragoman, D
    [J]. PROGRESS IN OPTICS, VOL. 37, 1997, 37 : 1 - 56
  • [10] WIGNER FUNCTION IN NEUTRON INTERFEROMETRY
    SUDA, M
    [J]. QUANTUM AND SEMICLASSICAL OPTICS, 1995, 7 (05): : 901 - 916