Bochner-Riesz Means and K-Functional on Triebel-Lizorkin Spaces

被引:0
|
作者
Chen, Jiecheng [1 ]
Fan, Dashan [1 ,2 ]
Zhao, Fayou [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
[2] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[3] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Bochner-Riesz means; homogeneous Triebel-Lizorkin spaces; norm convergence; OSCILLATORY INTEGRALS; HP SPACES; FOURIER; CONVOLUTION; MULTIPLIERS; CONJECTURE; THEOREM;
D O I
10.1080/01630563.2022.2026957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on n-dimensional Euclidean spaces and n-dimensional torus as underlying spaces, we investigate the rate for the norm convergence of the generalized Bochner-Riesz means on homogeneous Triebel-Lizorkin spaces, and establish the equivalence between the rate and the K-functional. Particularly, we show that such equivalence is closely related to the Bochner-Riesz conjecture on homogeneous Triebel-Lizorkin spaces. Thus, we obtain natural extensions of some well-known theorems by Fefferman, Tomas and Stein and by Carleson, Sojlin and Hormander.
引用
收藏
页码:273 / 306
页数:34
相关论文
共 50 条