Improving object proposals with top-down cues

被引:1
|
作者
Li, Wei [1 ]
Li, Hongliang [1 ]
Luo, Bing [1 ]
Shi, Hengcan [1 ]
Wu, Qingbo [1 ]
Ngan, King Ngi [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu, Peoples R China
[2] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Object proposals; Object detection; Object recognition;
D O I
10.1016/j.image.2017.04.006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The generation of object proposals plays an important role in object detection. Most existing methods produce object proposals by using bottom-up cues, such as closed contour or superpixel. In this paper, we propose a novel method to improve the ranking of object proposals by combining bottom-up cues with top-down information of objectivity. Firstly, we utilize the bottom-up method to generate initial object proposals of the given test image. Then we retrieve its top-k similar images from training images set. Considering both appearance and spatial similarity between initial object proposals and the ground truth bounding boxes of these top-k similar images, we obtain the top-down guided scores of initial object proposals. Finally, the refined score of each initial object proposal is modeled as a fusion of the bottom-up score and the top-down score. Experiments show that our method achieves better performance compared with the state-of-art on the Pascal VOC2007 dataset.
引用
收藏
页码:20 / 27
页数:8
相关论文
共 50 条
  • [1] Top-Down Cues for Event Recognition
    Li, Li
    Yuan, Chunfeng
    Hu, Weiming
    Li, Bing
    COMPUTER VISION - ACCV 2010, PT III, 2011, 6494 : 691 - 702
  • [2] Stereo reconstruction using top-down cues
    Hadfield, Simon
    Lebeda, Karel
    Bowden, Richard
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 157 : 206 - 222
  • [3] Object segmentation by top-down processes
    Bravo, MJ
    Farid, H
    VISUAL COGNITION, 2003, 10 (04) : 471 - 491
  • [4] Integration of Bottom-up and Top-down Cues in Bayesian Network for Object Detection
    Huo, Hong
    Fang, Tao
    PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC), 2013, : 883 - 887
  • [5] Collect-Cut: Segmentation with Top-Down Cues Discovered in Multi-Object Images
    Lee, Yong Jae
    Grauman, Kristen
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 3185 - 3192
  • [6] Learning and incorporating top-down cues in image segmentation
    He, Xuming
    Zemel, Richard S.
    Ray, Debajyoti
    COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 : 338 - 351
  • [7] Top-down matching singleton cues have no edge over top-down matching nonsingletons in spatial cueing
    Schoeberl, Tobias
    Goller, Florian
    Ansorge, Ulrich
    PSYCHONOMIC BULLETIN & REVIEW, 2019, 26 (01) : 241 - 249
  • [8] Top-down attention guided object detection
    Tian, Mei
    Luc, Si-Wei
    Liao, Ling-Zhi
    Zhao, Lian-Wei
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2006, 4232 : 193 - 202
  • [9] Top-Down Color Attention for Object Recognition
    Khan, Fahad Shahbaz
    van de Weijer, Joost
    Vanrell, Maria
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 979 - 986
  • [10] Top-down matching singleton cues have no edge over top-down matching nonsingletons in spatial cueing
    Tobias Schoeberl
    Florian Goller
    Ulrich Ansorge
    Psychonomic Bulletin & Review, 2019, 26 : 241 - 249