Chaotic attractors in the four-dimensional Leslie-Gower competition model

被引:3
|
作者
Gyllenberg, Mats [1 ]
Jiang, Jifa [2 ]
Niu, Lei [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
[2] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
基金
芬兰科学院; 中国国家自然科学基金;
关键词
Leslie-Gower model; Carrying simplex; Chaotic attractor; Quasiperiod-doubling cascades; Invasion; 3; LIMIT-CYCLES; CARRYING SIMPLEX; DIFFERENTIAL-EQUATIONS; GLOBAL STABILITY; EQUIVALENT CLASSIFICATION; DYNAMICS; BOUNDARY; SYSTEMS; UNIQUENESS; SIMPLICES;
D O I
10.1016/j.physd.2019.132186
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the occurrence of the chaotic attractor in the four-dimensional classical Leslie-Gower competition model. We find that chaos can be generated by a cascade of quasiperiod-doubling bifurcations starting from a supercritical Neimark-Sacker bifurcation of the positive fixed point in this model. The chaotic attractor is contained in the three-dimensional carrying simplex, that is a globally attracting invariant manifold. Biologically, the result implies that the invasion attempts by an invader into a trimorphic population under the Leslie-Gower dynamics can lead to chaos. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] ON A DISCRETE THREE-DIMENSIONAL LESLIE-GOWER COMPETITION MODEL
    Chow, Yunshyong
    Palmer, Kenneth
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08): : 4367 - 4377
  • [2] Multiple attractors in a Leslie-Gower competition system with Allee effects
    Chow, Yunshyong
    Jang, Sophia R. -J.
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (02) : 169 - 187
  • [3] Competitive exclusion and coexistence in a Leslie-Gower competition model with Allee effects
    Jang, Sophia R. -J.
    [J]. APPLICABLE ANALYSIS, 2013, 92 (07) : 1527 - 1540
  • [4] Turing instability for a Leslie-Gower model
    Capone, F.
    De Luca, R.
    Fiorentino, L.
    Luongo, V.
    Massa, G.
    [J]. RICERCHE DI MATEMATICA, 2023,
  • [5] Coexistence and superior competitor exclusion in the Leslie-Gower competition model with fast dispersal
    Marva, Marcos
    Bravo de la Parra, Rafael
    [J]. ECOLOGICAL MODELLING, 2015, 306 : 247 - 256
  • [6] DIFFUSION-DRIVEN INSTABILITY AND WAVE PATTERNS OF LESLIE-GOWER COMPETITION MODEL
    Li, Mei-Feng
    Zhang, Guang
    Lu, Zhi-Yi
    Zhang, Lu
    [J]. JOURNAL OF BIOLOGICAL SYSTEMS, 2015, 23 (03) : 385 - 399
  • [7] Nonlinear oscillations in the modified Leslie-Gower model
    Gine, Jaume
    Valls, Claudia
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 51 (51)
  • [8] Dynamic Behaviors of a Leslie-Gower Ecoepidemiological Model
    Kang, Aihua
    Xue, Yakui
    Fu, Jianping
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [9] Asymptotic dynamics of a modified discrete Leslie-Gower competition system
    Chow, Yunshyong
    Jang, Sophia R. -J.
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (06)
  • [10] The Effects of Harvesting on the Dynamics of a Leslie-Gower Model
    Xie, Jingli
    Liu, Hanyan
    Luo, Danfeng
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021