On homogeneous second order linear general quantum difference equations

被引:8
|
作者
Faried, Nashat [1 ]
Shehata, Enas M. [2 ]
El Zafarani, Rasha M. [1 ]
机构
[1] Ain Shams Univ, Dept Math, Fac Sci, Cairo, Egypt
[2] Menoufia Univ, Dept Math, Fac Sci, Shibin Al Kawm, Egypt
关键词
a general quantum difference operator; general quantum difference equations; Euler-Cauchy general quantum difference equation; CALCULUS;
D O I
10.1186/s13660-017-1471-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence and uniqueness of solutions of the beta-Cauchy problem of second order beta-difference equations a(0)(t) D(beta)(2)y(t) + a(1)(t) D(beta)y(t) + a(2)(t) y(t) = b(t), t is an element of I, a(0)(t) not equal 0, in a neighborhood of the unique fixed point s(0) of the strictly increasing continuous function beta, defined on an interval I subset of R. These equations are based on the general quantum difference operator D-beta, which is defined by D(beta)f (t) = (f (beta(t))-f (t))/(beta(t)-t), beta(t) beta not equal t. We also construct a fundamental set of solutions for the second order linear homogeneous beta-difference equations when the coefficients are constants and study the different cases of the roots of their characteristic equations. Finally, we drive the Euler-Cauchy beta-difference equation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] On homogeneous second order linear general quantum difference equations
    Nashat Faried
    Enas M Shehata
    Rasha M El Zafarani
    Journal of Inequalities and Applications, 2017
  • [2] Floquet theory for second order linear homogeneous difference equations
    Encinas, A. M.
    Jimenez, M. J.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (03) : 353 - 375
  • [3] Asymptotic behavior of solutions of linear homogeneous second-order difference equations
    A. D. Kozak
    O. N. Novoselov
    Mathematical Notes, 1999, 66 : 167 - 170
  • [4] Probabilistic solution of random homogeneous linear second-order difference equations
    Casaban, M. -C.
    Cortes, J. -C
    Romero, J. -V.
    Rosello, M. -D.
    APPLIED MATHEMATICS LETTERS, 2014, 34 : 27 - 32
  • [5] Asymptotic behavior of solutions of linear homogeneous second-order difference equations
    Kozak, AD
    Novoselov, ON
    MATHEMATICAL NOTES, 1999, 66 (1-2) : 167 - 170
  • [6] Second order linear difference equations
    Encinas, A. M.
    Jimenez, M. J.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (03) : 305 - 343
  • [7] On difference Riccati equations and second order linear difference equations
    Katsuya Ishizaki
    Aequationes mathematicae, 2011, 81 : 185 - 198
  • [8] On difference Riccati equations and second order linear difference equations
    Ishizaki, Katsuya
    AEQUATIONES MATHEMATICAE, 2011, 81 (1-2) : 185 - 198
  • [9] Theory of nth-order linear general quantum difference equations
    Nashat Faried
    Enas M. Shehata
    Rasha M. El Zafarani
    Advances in Difference Equations, 2018
  • [10] Theory of nth-order linear general quantum difference equations
    Faried, Nashat
    Shehata, Enas M.
    El Zafarani, Rasha M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,