Transforming Geo-Referenced Data in Contextual Information for Context-Aware Recommender Systems

被引:0
|
作者
Santana, Igor Andre [1 ]
Suniga, Abner [1 ]
Donini, Juliano [1 ]
Sundermann, Camila Vaccari [2 ]
Rezende, Solange Oliveira [2 ]
Domingues, Marcos Aurelio [1 ]
机构
[1] State Univ Maringa UEM, Dept Informat DIN, Maringa, PR, Brazil
[2] Univ Sao Paulo, Inst Math & Comp Sci ICMC, Sao Carlos, SP, Brazil
关键词
Context-aware recommender systems; Geo-referenced data; Contextual information; Clustering;
D O I
10.1109/WI.2018.00-42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A recommender system can be defined as an information filtering technology which can be used to output a ranking of items (e.g. products, places, etc) that are likely to be of interest to a user. Context-aware recommender systems makes recommendations by incorporating contextual information into the recommendation process. However, there is a lack of automatic methods to obtain contextual information for such systems. In this work, we have proposed to apply clustering techniques to transform geo-referenced data (i.e. latitude and longitude) in contextual information (i.e. regions) to feed the contextual systems. We have evaluated our proposal in the Yelp dataset, which showed evidences that our contextual information can provide better recommendations.
引用
收藏
页码:528 / 533
页数:6
相关论文
共 50 条
  • [1] Exploiting Geo-Referenced Data as Contextual Information into Context-Aware Recommender Systems
    Domingues, Marcos Aurelio
    Campos Pimentel, Maria da Graca
    [J]. 2017 36TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2017,
  • [2] Privileged contextual information for context-aware recommender systems
    Sundermann, Camila Vaccari
    Domingues, Marcos Aurelio
    Conrado, Merley da Silva
    Rezende, Solange Oliveira
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2016, 57 : 139 - 158
  • [3] Mining Contextual Knowledge for Context-Aware Recommender Systems
    Zhang, Wenping
    Lau, Raymond
    Tao, Xiaohui
    [J]. 2012 NINTH IEEE INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING (ICEBE), 2012, : 356 - 360
  • [4] COT: Contextual Operating Tensor for Context-Aware Recommender Systems
    Liu, Qiang
    Wu, Shu
    Wang, Liang
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 203 - 209
  • [5] Using Contextual Information from Topic Hierarchies to Improve Context-Aware Recommender Systems
    Domingues, Marcos Aurelio
    Manzato, Marcelo Garcia
    Marcacini, Ricardo Marcondes
    Sundermann, Camila Vaccari
    Rezende, Solange Oliveira
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3606 - 3611
  • [6] The Contextual Turn: from Context-Aware to Context-Driven Recommender Systems
    Pagano, Roberto
    Cremonesi, Paolo
    Quadrana, Massimo
    Larson, Martha
    Hidasi, Balazs
    Tikk, Domonkos
    Karatzoglou, Alexandros
    [J]. PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), 2016, : 249 - 252
  • [7] Context-Aware Recommender Systems
    Adomavicius, Gediminas
    Mobasher, Bamshad
    Ricci, Francesco
    Tuzhilin, Alex
    [J]. AI MAGAZINE, 2011, 32 (03) : 67 - 80
  • [8] Context-aware Recommender Systems
    Verbert, Katrien
    Duval, Erik
    Lindstaedt, Stefanie N.
    Gillet, Denis
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2010, 16 (16) : 2175 - 2178
  • [9] Generating Synthetic Data for Context-Aware Recommender Systems
    Pasinato, Marden
    Mello, Carlos Eduardo
    Aufaure, Marie-Aude
    Zimbrao, Geraldo
    [J]. 2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 563 - 567
  • [10] Bringing ubiquitous computing into geo-referenced information systems
    Dias, AE
    Santos, EM
    Pimentao, JP
    Pedrosa, PJ
    Romao, TI
    [J]. GEOGRAPHICAL INFORMATION - FROM RESEARCH TO APPLICATION THROUGH COOPERATION, VOLS 1 AND 2, 1996, : 100 - 103