Turing Instability in a Model with Two Interacting Ising Lines: Non-equilibrium Fluctuations

被引:0
|
作者
Capanna, Monia [1 ,2 ]
Soprano-Loto, Nahuel [1 ,3 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Buenos Aires, DF, Argentina
[2] Univ Aquila, I-67100 Laquila, Italy
[3] Gran Sasso Sci Inst, I-67100 Laquila, Italy
关键词
Non-equilibrium fluctuations; Turing instability; Ising; Kac potential;
D O I
10.1007/s10955-018-2206-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This is the second of two articles on the study of a particle system model that exhibits a Turing instability type effect. About the hydrodynamic equations obtained in Capanna and Soprano (Markov Proc Relat Fields 23(3):401-420, 2017), we find conditions under which Turing instability occurs around the zero equilibrium solution. In this instability regime: for long times at which the process is of infinitesimal order, we prove that the non-equilibrium fluctuations around the hydrodynamic limit are Gaussian; for times converging to the critical time defined as the one at which the process starts to be of finite order, we prove that the +/- 1-Fourier modes are uniformly away from zero.
引用
收藏
页码:365 / 403
页数:39
相关论文
共 50 条
  • [1] Turing Instability in a Model with Two Interacting Ising Lines: Non-equilibrium Fluctuations
    Monia Capanna
    Nahuel Soprano-Loto
    Journal of Statistical Physics, 2019, 174 : 365 - 403
  • [2] Turing Instability in a Model with Two Interacting Ising Lines: Hydrodynamic Limit
    Capanna, M.
    Soprano-Loto, N.
    MARKOV PROCESSES AND RELATED FIELDS, 2017, 23 (03) : 401 - 420
  • [3] Interacting random walkers and non-equilibrium fluctuations
    E. Agliari
    M. Casartelli
    A. Vezzani
    The European Physical Journal B, 2008, 65 : 257 - 264
  • [4] Interacting random walkers and non-equilibrium fluctuations
    Agliari, E.
    Casartelli, M.
    Vezzani, A.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 65 (02): : 257 - 264
  • [5] The Non-Equilibrium Ising Model in Two Dimensions: a Numerical Study
    Giardina, Cristian
    MARKOV PROCESSES AND RELATED FIELDS, 2020, 26 (01) : 167 - 183
  • [6] A non-equilibrium Ising model of turbulence
    Faranda, Davide
    Mihelich, Martin
    Dubrulle, Berengere
    PHASE TRANSITIONS, 2017, 90 (11) : 1079 - 1088
  • [7] The non-equilibrium basis of Turing Instability and localised biological work
    Schiffmann, Yoram
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2017, 127 : 12 - 32
  • [8] Non-equilibrium work theorems for the two-dimensional Ising model
    Hijar, Humberto
    Quintana-H, Jacqueline
    Sutmann, Godehard
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [9] Non-equilibrium dynamics of the disordered Ising model
    Jain, S
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2000, (138): : 561 - 567
  • [10] Two-Temperature Non-Equilibrium Ising Models
    Int J Mod Phys C Phys Comput, 3 (389):