Learning Battles in ViZDoom via Deep Reinforcement Learning

被引:0
|
作者
Shao, Kun [1 ,2 ]
Zhao, Dongbin [1 ,2 ]
Li, Nannan [1 ,2 ]
Zhu, Yuanheng [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
reinforcement learning; deep learning; game AI;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
First-person shooter (FPS) video games play an important role in game artificial intelligence (AI). In this paper, we present an effective deep reinforcement learning (DRL) method to learn battles in ViZDoom. Our approach utilizes the actor-critic with Kronecker-factored trust region (ACKTR), a sample-efficient and computationally inexpensive DRL method. We train our ACKTR agents in two battle scenarios, and compare with the advantage actor-critic (A2C) baseline agent. The experimental results demonstrate that DRL methods successfully teach agents to battle in these scenarios. In addition, the ACKTR agents significantly outperform the A2C agents in terms of all the metrics by a significant margin.
引用
收藏
页码:389 / 392
页数:4
相关论文
共 50 条
  • [1] Deep Reinforcement Learning in VizDoom via DQN and Actor-Critic Agents
    Bakhanova, Maria
    Makarov, Ilya
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 138 - 150
  • [2] Deep Reinforcement Learning with DQN vs. PPO in VizDoom
    Zakharenkov, Anton
    Makarov, Ilya
    [J]. 21ST IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI), 2021, : 137 - 142
  • [3] Learning to Walk via Deep Reinforcement Learning
    Haarnoja, Tuomas
    Ha, Sehoon
    Zhou, Aurick
    Tan, Jie
    Tucker, George
    Levine, Sergey
    [J]. ROBOTICS: SCIENCE AND SYSTEMS XV, 2019,
  • [4] Bayesian Deep Reinforcement Learning via Deep Kernel Learning
    Junyu Xuan
    Jie Lu
    Zheng Yan
    Guangquan Zhang
    [J]. International Journal of Computational Intelligence Systems, 2018, 12 : 164 - 171
  • [5] Bayesian Deep Reinforcement Learning via Deep Kernel Learning
    Xuan, Junyu
    Lu, Jie
    Yan, Zheng
    Zhang, Guangquan
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (01) : 164 - 171
  • [6] Learning to Drive via Apprenticeship Learning and Deep Reinforcement Learning
    Huang, Wenhui
    Braghin, Francesco
    Wang, Zhuo
    [J]. 2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1536 - 1540
  • [7] Scaling Tangled Program Graphs to Visual Reinforcement Learning in ViZDoom
    Smith, Robert J.
    Heywood, Malcolm, I
    [J]. GENETIC PROGRAMMING (EUROGP 2018), 2018, 10781 : 135 - 150
  • [8] Deep sparse representation via deep dictionary learning for reinforcement learning
    Tang, Jianhao
    Li, Zhenni
    Xie, Shengli
    Ding, Shuxue
    Zheng, Shaolong
    Chen, Xueni
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2398 - 2403
  • [9] Towards Interpretable Deep Reinforcement Learning Models via Inverse Reinforcement Learning
    Xie, Yuansheng
    Vosoughi, Soroush
    Hassanpour, Saeed
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 5067 - 5074
  • [10] Learning to Navigate in Human Environments via Deep Reinforcement Learning
    Gao, Xingyuan
    Sun, Shiying
    Zhao, Xiaoguang
    Tan, Min
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 418 - 429