A two-stage evolutionary algorithm based on three indicators for constrained multi-objective optimization

被引:31
|
作者
Dong, Jun [1 ]
Gong, Wenyin [1 ]
Ming, Fei [1 ]
Wang, Ling [2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Constrained multi-objective optimization; Evolutionary algorithm; Two-stage; Convergence; Diversity; Feasibility; GENETIC ALGORITHM; STRATEGY; SEARCH;
D O I
10.1016/j.eswa.2022.116499
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the key issues in solving constrained multi-objective optimization problems (CMOPs) is balancing the three indicators of convergence, diversity, and feasibility. We believe at different stages of the evolution, different indicators should be emphasized. This paper proposes a two-stage constrained multi-objective evolutionary algorithm (CMOEA) with different emphases on the three indicators. In Stage-I, the Pareto nondominated sorting and the unbiased two-objective model are used to evaluate the three indicators. The purpose of Stage-I is to obtain solutions with good distribution and to prevent the population from falling into local optima. After Stage-I, almost all of the individuals in the population are distributed in the vicinity of all feasible areas. The goal of Stage-II is to quickly converge the population to the Pareto front (PF). Thirty benchmark CMOPs and four real-world problems were used to evaluate the performance of our algorithm. Experimental results indicate that our approach achieved significantly better results or was at least competitive to the compared eight state-of-the-art CMOEAs on most of the benchmark problems.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A simple two-stage evolutionary algorithm for constrained multi-objective optimization
    Ming, Fei
    Gong, Wenyin
    Zhen, Huixiang
    Li, Shuijia
    Wang, Ling
    Liao, Zuowen
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [2] An archive-based two-stage evolutionary algorithm for constrained multi-objective optimization problems
    Bao, Qian
    Wang, Maocai
    Dai, Guangming
    Chen, Xiaoyu
    Song, Zhiming
    Li, Shuijia
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75
  • [3] A two-stage evolutionary algorithm assisted by multi-archives for constrained multi-objective optimization
    Zhang, Wenjuan
    Liu, Jianchang
    Zhang, Wei
    Liu, Yuanchao
    Tan, Shubin
    [J]. APPLIED SOFT COMPUTING, 2024, 162
  • [4] A constrained multi-objective evolutionary algorithm with two-stage resources allocation
    Xia, Mingming
    Chong, Qing
    Dong, Minggang
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2023, 79
  • [5] A flexible two-stage constrained multi-objective evolutionary algorithm based on automatic regulation
    Zou, Juan
    Luo, Jian
    Liu, Yuan
    Yang, Shengxiang
    Zheng, Jinhua
    [J]. INFORMATION SCIENCES, 2023, 634 : 227 - 243
  • [6] A two-stage multi-objective evolutionary algorithm for large-scale multi-objective optimization
    Liu, Wei
    Chen, Li
    Hao, Xingxing
    Xie, Fei
    Nan, Haiyang
    Zhai, Honghao
    Yang, Jiyao
    [J]. 2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [7] A new two-stage based evolutionary algorithm for solving multi-objective optimization problems
    Wang, Yiming
    Gao, Weifeng
    Gong, Maoguo
    Li, Hong
    Xie, Jin
    [J]. INFORMATION SCIENCES, 2022, 611 : 649 - 659
  • [8] Dynamic multi-objective evolutionary optimization algorithm based on two-stage prediction strategy
    Guo, Zeyin
    Wei, Lixin
    Fan, Rui
    Sun, Hao
    Hu, Ziyu
    [J]. ISA Transactions, 2023, 139 : 308 - 321
  • [9] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    [J]. 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [10] An evolutionary algorithm for constrained multi-objective optimization
    Jiménez, F
    Gómez-Skarmeta, AF
    Sánchez, G
    Deb, K
    [J]. CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1133 - 1138