SEMILINEAR ELLIPTIC EQUATIONS INVOLVING A GRADIENT TERM IN UNBOUNDED DOMANS

被引:0
|
作者
Raghavendra, V. [1 ]
Kar, Rasmita [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Monotone method; Ambrosetti-prodi type problem; unbounded domain; MULTIPLICITY RESULT; POSITIVE SOLUTIONS; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence of a classical solution of semilinear elliptic BVP involving gradient term of the type -Delta u = g(u) + psi (del u) + f in Omega, u = 0 on partial derivative Omega, where Omega is a (not necessarily bounded) domain in R-n, n >= 2 with smooth boundary partial derivative Omega. f is an element of C-loc(0,alpha) ((Omega) over bar); 0 < alpha < 1, psi is an element of C-1 (R-n, R) and g satis fi es certain conditions (well known in the literature as \ jumping nonlinearity").
引用
收藏
页数:13
相关论文
共 50 条